

Process controller 8800

8800/8840 Configurator

More efficiency in engineering, more overview in operating: The projecting environment for the West controllers 8800/8840

Description of symbols:

- **i** General information
- Attention: ESD sensitive devices

© West Instruments • Printed in Germany

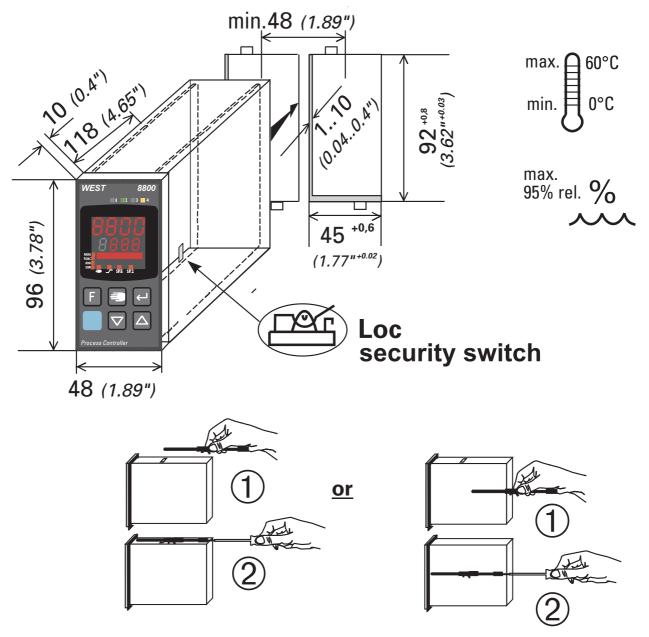
All rights reserved. No part of this document may be reproduced or published in any form or by any means without prior written permission from the copyright owner.

A publication of West Instruments, The Hyde Business Park, Brighton BN2 4JU, England

Contents

1	Mounting
2	Electrical connections
2.1	Connecting diagram
2.2	Terminal connection
3	Operation
3.1	Front view
3.2	Behaviour after power-on
3.3	Operating level
3.4	Error list / Mainenance manager
3.5	Self-tuning
3.5.1	Preparation for self-tuning
3.5.2	Optimization after start-up or at the set-point
3.5.3	Selecting the method ([onF/[ntr/tunE]])
3.5.4	Self-tuning start
3.5.5	Self-tuning cancellation
3.5.6	Acknowledgement procedures in case of unsuccessful self-tuning . 23
3.5.7	Examples for self-tuning attempts
3.6	Manual self-tuning
3.7	Second PID parameter set
3.8	Alarm handling
3.9	Operating structure
4	Configuration level
4.1	Configuration survey
4.2	Configuration parameters
4.3	Set-point processing
4.3.1	Set-point gradient / ramp
4.4	Switching behavior
4.4.1	Standard ($\mathbf{L} \mathbf{H} \mathbf{L} = \mathbf{D}$)
4.4.2	Switching attitude linear ([Y][L = 1])
4.4.3	Switching attitude non-linear ($\mathbf{L} \mathbf{YLL} = \mathbf{Z}$)
4.4.4	Heating and cooling with constant period ($\mathbf{L} \mathbf{H} \mathbf{L} = \mathbf{J}$) 52

4.5	Configuration examples
4.5.1	On-Off controller / Signaller (inverse)
4.5.2	2-point controller (inverse)
4.5.3	3-point controller (relay & relay)
4.5.4	3-point stepping controller (relay & relay)
4.5.5	Continuous controller (inverse)
4.5.6	Δ - Y - Off controller / 2-point controller with pre-contact 58
4.5.7	8800 process controller with measured value output
4.5.8	Continuous controller with integrated positioner ($\mathbf{L} \mathbf{n} \mathbf{k} \mathbf{r} / \mathbf{L} \mathbf{F} \mathbf{n} \mathbf{c} = \mathbf{b}$) 60
5	Parameter setting level
5.1	Parameter survey
5.2	Parameters
5.3	Input scaling
5.3.1	Input $I \cap P$. I and $I \cap P$. 3
5.3.2	Input 1 n P.2
6	Calibration level
7	Special functions
7.1	DAC®— motor actuator monitoring
7.2	O_2 measurement
7.2.1	Connection
7.2.2	Configuration:
7.3	Linearization
7.4	8800 process controller as Modbus master
8	8800/8840 configurator
9	Versions
10	Technical data
11	Safety hints
11.1	Resetting to factory setting
12	Notes 83



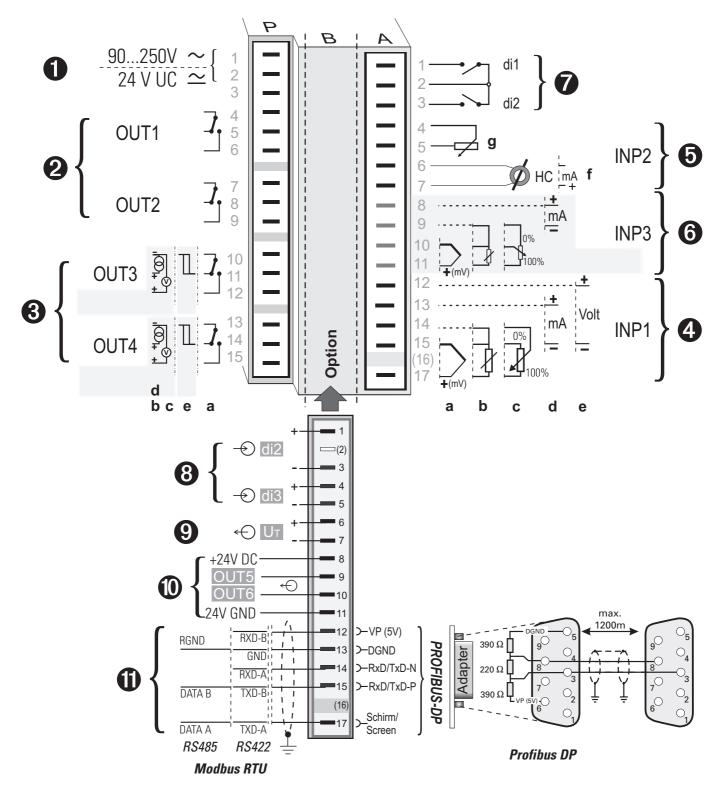
1 Mounting

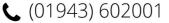
Safety switch:

For access to the safety switch, the controller must be withdrawn from the housing. Squeeze the top and bottom of the front bezel between thumb and forefinger and pull the controller firmly from the housing.

Loc	open	Access to the levels is as adjusted by means of 8800/8840 configurator (engineering tool)
closed all levels accessible wihout restriction		all levels accessible wihout restriction

- Factory setting
- Default setting: display of all levels suppressed, password PR55 = UFF


Caution! The unit contains ESD-sensitive components.


2 Electrical connections

2.1 Connecting diagram

- Dependent of order, the controller is fitted with:
 - flat-pin terminals 1 x 6,3mm or 2 x 2,8mm to DIN 46 244 or
 - screw terminals for 0,5 to 2,5mm²

2.2 Terminal connection

Power supply connection 1

See chapter 10 "Technical data"

Connection of outputs OUT1/2

Relay outputs (250V/2A), potential-free changeover contact

Connection of outputs OUT3/4 3

- a relay (250V/2A), potential-free changeover contact universal output
- **b** current (0/4...20mA)
- **c** voltage (0/2...10V)
- d transmitter supply
- e logic (0..20mA / 0..12V)

Connection of input INP1 4

Input mostly used for variable x1 (process value)

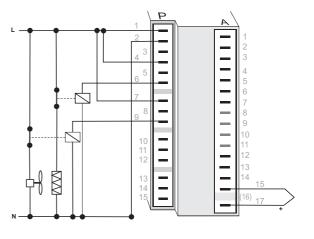
- a thermocouple
- **b** resistance thermometer (Pt100/ Pt1000/ KTY/ ...)
- **c** current (0/4...20mA)
- **d** voltage (0/2...10V)

Connection of input INP2 **5**

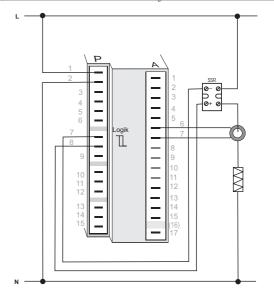
- f heating current input (0..50mA AC) or input for ext. set-point (0/4...20mA)
- **g** potentiometer input for position feedback

Connection of input INP2 6

- a Heating current input (0...50mA AC) or input for ext. Set-point (0/4...20mA)
- **b** Potentiometer input for position feedback


Connection of input INP3 6

As input INP1, but without voltage


Connection of inputs di1, di2

Digital input, configurable as switch or push-button


2 OUT1/2 heating/cooling

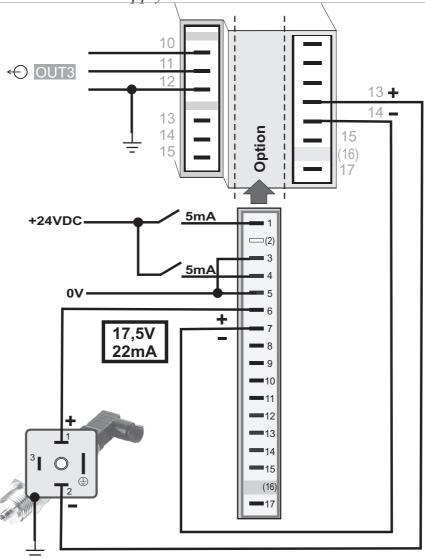
5 INP2 current tansformer

Connection of inputs di2/3 (option)

Digital inputs (24VDC external), galvanically isolated, configurable as switch or push-button

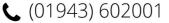
Connection of output U_T (option)

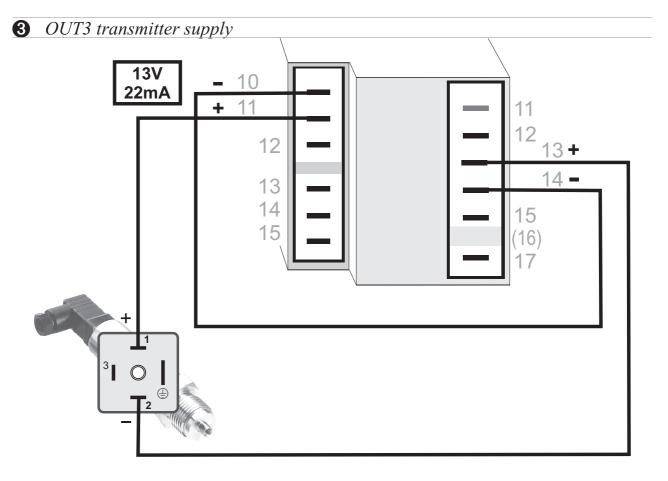
Supply voltage connection for external energization

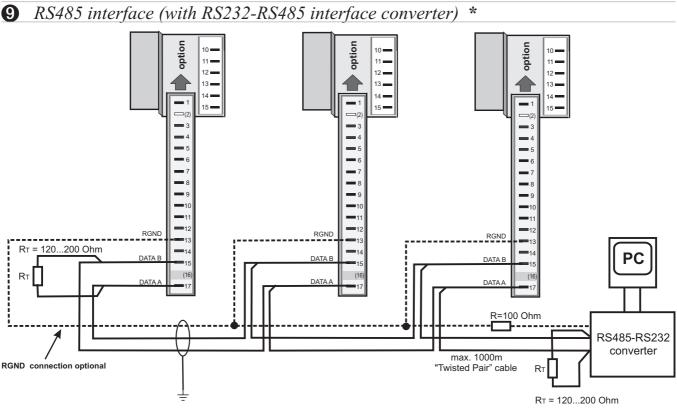

Connection of outputs OUT5/6 ((option)

Digital outputs (opto-coupler), galvanic isolated, common positive control voltage, output rating: 18...32VDC

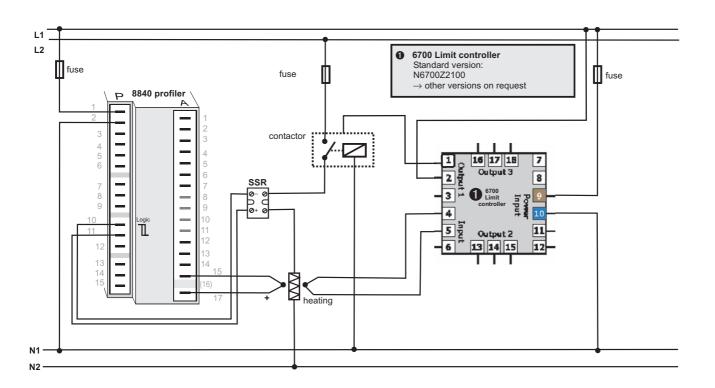
Connection of bus interface (1) (option)


PROFIBUS DP or RS422/485 interface with Modbus RTU protocol


8 9 di2/3, 2-wire transmitter supply

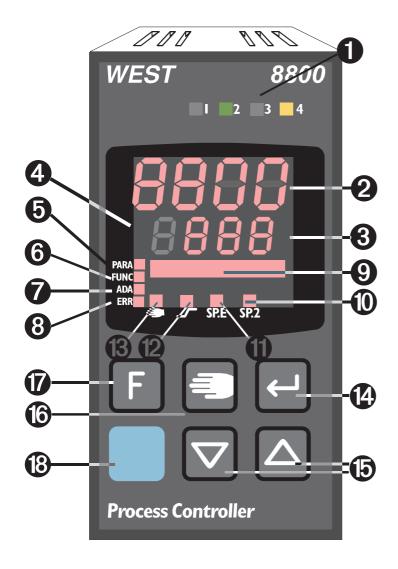


If the universal output OUT3 or OUT4 is used there may be no external galvanic connection between measuring and output circuits!


* Interface description Modbus RTU in speperate manual: see page 75.

OUT3 as logic output with solid-state relay (series and parallel connection) Parallel connection Series connection SSR I_{max}=22mA 0 -0 0 +0 I_{max}=22mA SSR Logic ⊘ -⊘ 12V Ь Ф 12V**↓** 11 0 +0 12 SSR 12 0 -0 -0 **↓**4V \triangleright \subset 0 +0

8800 process controller connecting example:



CAUTION: Using a Limit controller is recommendable in systems where overtemperature implies a fire hazard or other risks.

3 Operation

3.1 Front view

LED colours:

LED 1, 2, 3, 4: yellow Bargraph: red other LEDs: red

In the upper display line, the process value is <u>always</u> displayed.

At parameter, configuration, calibration as well as extended operating level, the bottom display line changes cyclically between parameter name and parameter value.

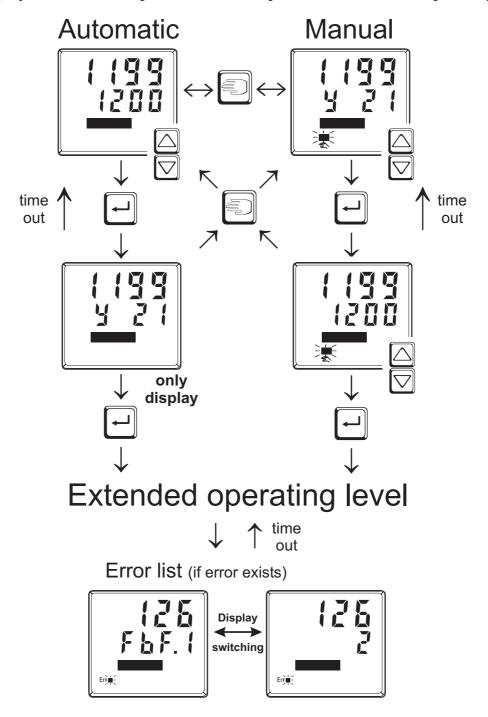
- Status of switching outputs
- **2** Process value display
- **3** Set-point, controller output
- 4 Signals display on °C or °F
- **5** Signals Lonf and PArA level
- **6** Signals aktive function key
- **7** Self-tuning active
- **8** Entry in error list
- **9** Bargraph or clear text display
- **10 5** P.2 is effective
- 1 5 P.E is effective
- 2 Set-point gradient effective
- **(3)** Manual/automatic switch-over:

Off: Automatic

On: Manual (changing possible) Blinks: Manual (changing not

possible

 $(\rightarrow \text{EanF}/\text{Entr}/\tilde{n}\text{An})$


- Enter key:
 calls up extended operating
 level / error list
- **(b)** Up/down keys: changing the set-point or the controller output value
- Manual mode /spec. function $(\rightarrow \text{Enn} \text{F} / \text{LULI})$
- **7** Freely programmable function key
- PC connection for 8800/8840 configurator (engineering tool)

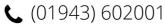
3.2 Behaviour after power-on

After supply voltage switch-on, the unit starts with the **operating level**. The unit is in the condition which was active before power-off. If the 8800 process controller was in manual mode at supply voltage switch-off, the controller will re-start with the last output value in manual mode at power-on.

3.3 Operating level

The content of the extended operating level is determined by means of 8800/8840 configurator (engineering tool). Parameters which are used frequently or the display of which is important can be copied to the extended operating level.

3.4 Error list / Mainenance manager


With one or several errors, the extended operating level always starts with the error list. Signalling an actual entry in the error list (alarm, error) is done by the Err LED in the display. To reach the error list press — twice.

Err LED status	Signification	Proceed as follows
blinks (status ♂)		- Determine the error type in the error list - After error correction the unit changes to status {
lit (status 1)	Error removed, alarm	- Acknowledge the alarm in the error list pressing key △or □ - The alarm entry was deleted (status 🗓).
off (status 🛭)		Not visible except when acknowledging

Error list:

Name	Description	Reason	Possible remedial action
E. (Internal error,	- E.g. defective EEPROM	- Contact West service
	cannot be removed		- Return unit to our factory
5.3	Internal error, can be	- e.g. EMC trouble	- Keep measurement and power supply
	reset		cables in separate runs
			- Ensure that interference suppression
			of contactors is provided
8.3	Configuration error,	- wrong configuration	- Check interaction of configuration /
	can be reset	- missing configuration	parameters
E.Y	Hardware error	- Codenumber and	- Contact West service
		hardware are not	- Elektronic-/Optioncard must be
		identical	exchanged
F 6 F. 1	Sensor break INP1	- Sensor defective	- Replace INP1 sensor
		- Faulty cabling	- Check INP1 connection
5hŁ.1	Short circuit INP1	- Sensor defective	- Replace INP1 sensor
		- Faulty cabling	- Check INP1 connection
POL. (INP1polarity error	- Faulty cabling	- Reverse INP1 polarity
F 6 F.2	Sensor break INP2	- Sensor defective	- Replace INP2 sensor
		- Faulty cabling	- Check INP2 connection
5hŁ.2	Short circuit INP2	- Sensor defective	- Replace sensor INP2
		- Faulty cabling	- Check INP2 connection
P01.2	INP2 polarity	- Faulty cabling	- Reverse INP2 polarity
F b F.3	Sensor break INP3	- Sensor defective	- Replace INP3 sensor
		- Faulty cabling	- Check INP3 connection
5hŁ.3	Short circuit INP3	- Sensor defective	- Replace sensor INP3
		- Faulty cabling	- Check INP3 connection
POL.3	INP3 polarity	- Faulty cabling	- Reverse INP3 polarity

Name	Description	Reason	Possible remedial action
HER	Heating current alarm (HCA)	- Heating current circuit	 Check heating current circuit If necessary, replace heater band
55r	Heating current short circuit (SSR)	 Gurrent flow in heating circuit with controller off SSR defective 	- Check heating current circuit - If necessary, replace solid-state relay
Loop	Control loop alarm (LOOP)	 Input signal defective or not connected correctly Output not connected correctly 	 Check heating or cooling circuit Check sensor and replace it, if necessary Check controller and switching device
RARH	Self-tuning heating alarm (ADAH)	- See Self-tuning heating error status	- see Self-tuning heating error status
RARE	Self-tuning heating alarm cooling (ADAC)	- See Self-tuning cooling error status	- see Self-tuning cooling error status
L iñ. l	stored limit alarm 1	- adjusted limit value 1 exceeded	- check process
L iñ.2	stored limit alarm 2	- adjusted limit value 2 exceeded	- check process
L iñ.3	stored limit alarm 3	- adjusted limit value 3 exceeded	- check process
I nF. I	time limit value message	- adjusted number of operating hours reached	- application-specific
InF.2	duty cycle message (digital ouputs)	- adjusted number of duty cycles reached	- application-specific
£.5	Internal error in DP module	self-test errorinternal communication interrupted	Switch on the instrument againContact West service
dP.1	No access by bus master	bus errorconnector problemno bus connection	Check cableCheck connectorCheck connections
d P.Z	Faulty configuration	- Faulty DP configuration telegram	- Check DP configuration telegram in master
d P.3	Inadmissible parameter setting telegram sent	- Faulty DP parameter setting telegram	- Check DP parameter setting telegram in master
d P.Y	No data communication	Bus errorAddress errorMaster stopped	Check cable connectionCheck addressCheck master setting

Saved alarms (Err-LED is lit) can be acknowledged and deleted with the digital input di1/2/3, the F-key or the -key. Configuration, see page 37: [onf/LDG] /Err.r

If an alarm is still valid that means the cause of the alarm is not removed so far (Err-LED blinks), then other saved alarms can not be acknowledged and deleted.

Self-tuning heating (RdRH) and cooling (RdRL) error status:

Error status	Description	Behaviour
8	No error	
3	Faulty control action	Re-configure controller (inverse \leftrightarrow direct)
Ч	No response of process variable	The control loop is perhaps not closed: check sensor, connections and process
5	Low reversal point	Increase (RdR.H) max. output limiting Y.H or decrease (RdR.L) min. output limiting Y.L o
δ	Danger of exceeded set-point (parameter determined)	If necessary, increase (inverse) or reduce (direct) set-point
7	Output step change too small ($\Delta y > 5\%$)	Increase (RdRH) max. output limiting YH or reduce (RdRL) min. output limiting YL o
8	Set-point reserve too small	Acknowledgment of this error message leads to switch-over to automatic mode. If self-tuning shall be continued, increase set-point (invers), reduce set-point (direct) or decrease set-point range (\rightarrow PRr R / 5EEP / 5P.L II and 5P.H \rightarrow)
9	Impulse tuning failed	The control loop is perhaps not closed: check sensor, connections and process

DAC function (dRI) error status:

Error status	Description	Behaviour
ū	No error	
3	Output is blocked	Check the drive for blockage
ч	Wrong method of operation	Wrong phasing, defect motor capacitor
5	Fail at Yp measurement	Check the connection to the Yp input
δ	Calibration error	Manual calibration necessary

3.5 Self-tuning

For determination of optimum process parameters, self-tuning is possible. After starting by the operator, the controller makes an adaptation attempt, whereby the process characteristics are used to calculate the parameters for fast line-out to the set-point without overshoot.

The following parameters are optimized when self-tuning: Parameter set 1:

Pb!	- Proportional band 1 (heating) in engineering units [e.g. °C]
£ 1 1	- Integral time 1 (heating) in [s] → only, unless set to □ F
Ed (- Derivative time 1 (heating) in [s] → only, unless set to □ F F
Ł l	- Minimum cycle time 1 (heating) in [s] → only, unless Rdt II was set to "no self-tuning" during configuration by means of 8800/8840 configurator.
P62	- Proportional band 2 (cooling) in engineering units [e.g. °C]
£ 12	- Integral time 2 (cooling) in [s] → only, unless set to UFF
£ d 2	- Derivative time 2 (cooling) in [s]
	\rightarrow only, unless set to $\square FF$
£2	- Minimum cycle time 2 (cooling) in [s] → only, unless # d t □ was set to "no self-tuning" during

Parameter set 2: analogous to parameter set 1 (see page25)

3.5.1 Preparation for self-tuning

- Adjust the controller measuring range as control range limits. Set values and roll. and roll. to the limits of subsequent control. (Configuration→Controller→lower and upper control range limits) EanF \rightarrow [ntr \rightarrow roll androll
- Determine which parameter set shall be optimized.
 - -The instantaneously effective parameter set is optimized.
 - \rightarrow Activate the relevant parameter set (1 or 2).
- Determine which parameter set shall be optimized (see tables above).
- Select the self-tuning method see chapter 3.5.3
 - -Step attempt after start-up
 - -Pulse attempt after start-up
 - -Optimization at the set-point

3.5.2 Optimization after start-up or at the set-point

The two methods are optimization after start-up and at the set-point. As control parameters are always optimal only for a limited process range, various methods can be selected dependent of requirements. If the process behaviour is very different after start-up and directly at the set-point, parameter sets 1 and 2 can be optimized using different methods. Switch-over between parameter sets dependent of process status is possible (see page 25).

Optimization after start-up: (see page25)

Optimization after start-up requires a certain separation between process value and set-point. This separation enables the controller to determine the control parameters by evaluation of the process when lining out to the set-point. This method optimizes the control loop from the start conditions to the set-point, whereby a wide control range is covered.

We recommend selecting optimization method "Step attempt after start-up" with $\mathbf{k} = 0$ first. Unless this attempt is completed successfully, we recommend a "Pulse attempt after start-up".

Optimization at the set-point: (see page 18)

For optimizing at the set-point, the controller outputs a disturbance variable to the process. This is done by changing the output variable shortly. The process value changed by this pulse is evaluated. The detected process parameters are converted into control parameters and saved in the controller.

This procedure optimizes the control loop directly at the set-point. The advantage is in the small control deviation during optimization.

3.5.3 Selecting the method ([anF/[ntr/tunE)]

Selection criteria for the optimization method:

	Step attempt after start-up	Pulse attempt after start-up	Optimization at the set-point
F m u E = 0	sufficient set-point reserve is provided		sufficient set-point reserve is not provided
LunE = 1	-	sufficient set-point reserve is provided	sufficient set-point reserve is not provided
LunE = 2	always step attempt after start-up	-	-

Sufficient set-point reserve:

inverse controller: (with process value < set-point- (10% of roll - roll) direct controller: (with process value > set-point + (10% of roll - roll)

Step attempt after start-up

Condition: $- \xi u n \xi = 0$ and sufficient set-point reserve provided or $- \xi u n \xi = 2$

The controller outputs 0% correcting variable or 4.2 a and waits, until the process is at rest (see start-conditions on page 16).

Subsequently, a correcting variable step change to 100% is output.

The controller attempts to calculate the optimum control parameters from the process response. If this is done successfully, the optimized parameters are taken over and used for line-out to the set-point.

With a 3-point controller, this is followed by "cooling".

After completing the 1st step as described, a correcting variable of -100% (100%) cooling energy) is output from the set-point. After successfull determination of the "cooling parameters", line-out to the set-point is using the optimized parameters.

Pulse attempt after start-up

Condition: -k u n E = 1 and sufficient set-point reserve provided.

The controller outputs 0% correcting variable or \$\frac{11}{24} \oldsymbol{\alpha}\$ and waits, until the process is at rest (see start conditions page 16)

Subsequently, a short pulse of 100% is output (Y=100%) and reset.

The controller attempts to determine the optimum control parameters from the process response. If this is completed successfully, these optimized parameters are taken over and used for line-out to the set-point.

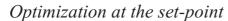
With a *3-point controller*, this is followed by "cooling".

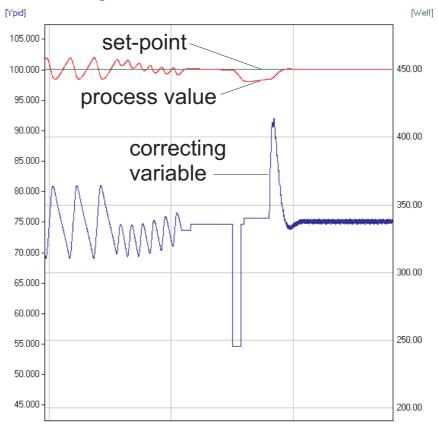
After completing the 1st step as described and line-out to the set-point, correcting variable "heating" remains unchanged and a cooling pulse (100% cooling energy) is output additionally. After successful determination of the "cooling" parameters", the optimized parameters are used for line-out to the set-point.

Optimization at the set-point

Conditions:

- A sufficient set-point reserve is **not** provided at self-tuning start (see page 17).
- **LunE** is 0 or 1
- With 5 k r k = 1 configured and detection of a process value oscillation by more than $\pm 0.5\%$ of (r $\cap L.H$ - r $\cap L.L$) by the controller, the control parameters are preset for process stabilization and the controller realizes an optimization at the set-point (see figure "Optimization at the set-point").
- when the step attempt after power-on has failed
- with active gradient function ($PRrR/5E + P/r.5P \neq QFF$), the set-point gradient is started from the process value and there isn't a sufficient set-point reserve.





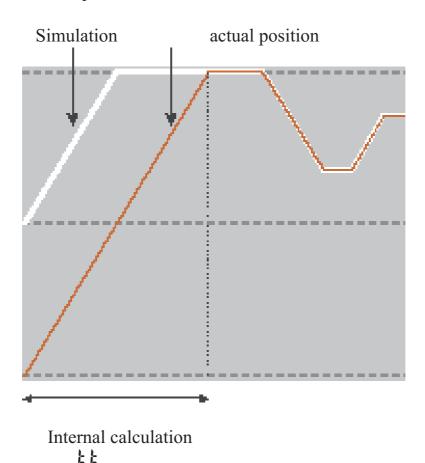
Optimization-at-the-set-point procedure:

The controller uses its instantaneous parameters for control to the set-point. In lined out condition, the controller makes a pulse attempt. This pulse reduces the correcting variable by max. 20% 1, to generate a slight process value undershoot. The changing process is analyzed and the parameters thus calculated are recorded in the controller. The optimized parameters are used for line-out to the set-point.

With a 3-point controller, optimization for the "heating" or "cooling" parameters occurs dependent of the instantaneous condition.

These two optimizations must be started separately.

1 If the correcting variable is too low for reduction in lined out condition it is increased by max. 20%.



Optimization at the set-point for 3-point stepping controller

With 3-point stepping controllers, the pulse attempt can be made with or without position feedback. Unless feedback is provided, the controller calculates the motor actuator position internally by varying an integrator with the adjusted actuator travel time. For this reason, precise entry of the actuator travel time (£ £), as time between stops is highly important. Due to position simulation, the controller knows whether an increased or reduced pulse must be output. After supply voltage switch-on, position simulation is at 50%. When the motor actuator was varied by the adjusted travel time in one go, internal calculation occurs, i.e. the position corresponds to the simulation:

Internal calculation always occurs, when the actuator was varied by travel time **£** £ <u>in one go</u>, independent of manual or automatic mode. When interrupting the variation, internal calculation is cancelled. Unless internal calculation occurred already after self-tuning start, it will occur automatically by closing the actuator once.

Unless the positioning limits were reached within 10 hours, a significant deviation between simulation and actual position may have occurred. In this case, the controller would realize minor internal calculation, i.e. the actuator would be closed by 20 %, and re-opened by 20 % subsequently. As a result, the controller knows that there is a 20% reserve for the attempt.

3.5.4 Self-tuning start

Start condition:

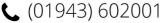
- For process evaluation, a stable condition is required. Therefore, the controller waits until the process has reached a stable condition after self-tuning start.
 - The rest condition is considered being reached, when the process value oscillation is smaller than $\pm 0.5\%$ of $(r \cap L.H r \cap L.L)$.
- For self-tuning start after start-up, a 10% difference from (5 P.L 0 ... 5 P.H .) is required.
- Self-tuning start can be blocked via 8800/8840 configurator® (engineering tool) (P.L oc).

 - Manual start by press keys and simultaneously via interface and automatic start after power-on and detection of process oscillations.

Ada LED status	Signification
blinks	Waiting, until process calms down
lit	Self-tuning is running
off	Self-tuning not activ or ended

3.5.5 Self-tuning cancellation

By the operator:


Self-tuning can always be cancelled by the operator. For this, press \Box and \triangle key simultaneously. With controller switch-over to manual mode after self-tuning start, self-tuning is cancelled. When self-tuning is cancelled, the controller will continue operating using the old parameter values.

By the controller:

If the Err LED starts blinking whilst self-tuning is running, successful self-tuning is prevented due to the control conditions. In this case, self-tuning was cancelled by the controller. The controller continues operating with the old parameters in automatic mode. In manual mode it continues with the old controller output value.

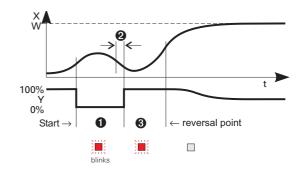
3.5.6 Acknowledgement procedures in case of unsuccessful self-tuning

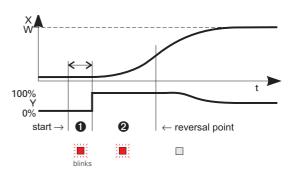
- 1. Press keys and simultaneously:
 The controller continues controlling using the old parameters in automatic mode. The Err LED continues blinking, until the self-tuning error was acknowledged in the error list.
- 2. *Press key* (if configured):
 The controller goes to manual mode. The Err LED continues blinking, until the self-tuning error was acknowleged in the error list.
- 3. *Press key* : Display of error list at extended operating level. After acknowledgement of the error message, the controller continues control in automatic mode using the old parameters.

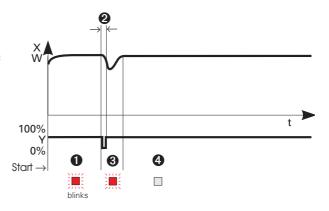
Cancellation causes:

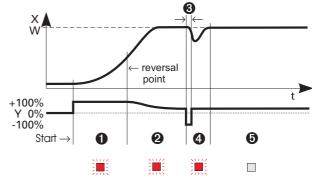
 \rightarrow page 15: "Error status self-tuning heating (RdRH) and cooling (RdRL)"

3.5.7 Examples for self-tuning attempts (controller inverse, heating or heating/cooling)


Start: heating power switched on
Heating power Y is switched off (1).
When the change of process value X
was constant during one minute (2),
the power is switched on (3).
At the reversal point, the self-tuning
attempt is finished and the new
parameter are used for controlling to
set-point W.


Start: heating power switched off
The controller waits 1,5 minutes (1).
Heating power Y is switched on (2).
At the reversal point, the self-tuning attempt is finished and control to the set-point is using the new parameters.


Self-tuning at the set-point \(\text{\text{\text{!}}} \)
The process is controlled to the set-point. With the control deviation constant during a defined time (1) (i.e. constant separation of process value and set-point), the controller outputs a reduced correcting variable pulse (max. 20%) (2). After determination of the control parameters using the process characteristic (3), control is started using the new parameters (4).


The parameter for hooting and of

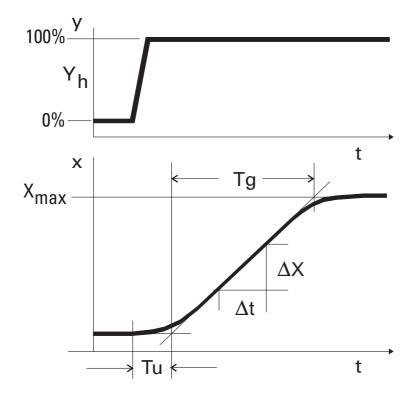
The parameter for heating and cooling are determined in two attempts. The heating power is switched on (1). Heating parameters **Pb** 1, **b** 1, **b** 1 and **b** 1 are determined at the reversal point. Control to the set-point occurs(2). With constant control deviation, the controller provides a cooling correcting variable pulse (3). After determining its cooling parameters **Pb** 2, **b** 12, **b** 13 and **b** 2 (4) from the





process characteristics, control operation is started using the new parameters (5).

During phase **3**, heating and cooling are done <u>simultaneously!</u>



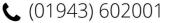
3.6 Manual self-tuning

The optimization aid can be used with units on which the control parameters shall be set without self-tuning.

For this, the response of process variable x after a step change of correcting variable y can be used. Frequently, plotting the complete response curve (0 to 100%) is not possible, because the process must be kept within defined limits. Values T_g and x_{max} (step change from 0 to 100 %) or Δt and Δx (partial step response) can be used to determine the maximum rate of increase v_{max} .

correcting variable $\mathbf{\hat{Y}}_{h}$

control range Tu


delay time (s) Tg recovery time (s)

 X_{max} maximum process value

 $\frac{Xmax}{Tg} = \frac{\Delta x}{\Delta t} \triangleq \text{max. rate of increase of process value}$ V_{max}

The control parameters can be determined from the values calculated for delay time T_u , maximum rate of increase $v_{\text{max}},$ control range X_h and characteristic Kaccording to the **formulas** given below. Increase Pb1, if line-out to the set-point oscillates.

Parameter adjustment effects

Parameter	Control	Line-out of disturbances	Start-up behaviour
Pb higher	increased damping	slower line-out	slower reduction of duty cycle
lower	reduced damping	faster line-out	faster reduction of duty cycle
೬៨ l highe	reduced damping	faster response to disturbances	faster reduction of duty cycle
lower	increased damping	slower response to disturbances	slower reduction of duty cycle

Formulas

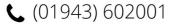
With 2-point and 3-point controllers, the cycle time must be adjusted to

 $\xi / \xi \leq 0.25 * Tu$

controller behavior	Pb ! [phy. units]	논 러 [s]	Ł , [s]
PID	1,7 * K	2 * Tu	2 * Tu
PD	0,5 * K	Tu	OFF
PI	2,6 * K	OFF	6 * Tu
P	K	OFF	0 F F
3-point-stepping	1,7 * K	Tu	2 * Tu

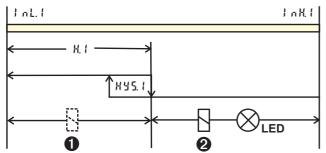
3.7 Second PID parameter set

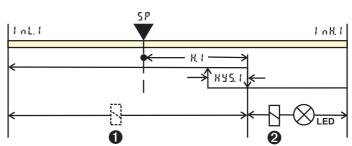
The process characteristic is frequently affected by various factors such as process value, correcting variable and material differences.

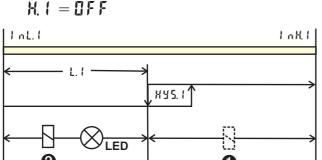

To comply with these requirements, the 8800 process controller can be switched over between two parameter sets.

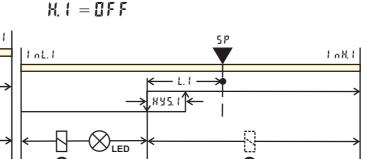
Parameter sets PRr R and PRr. 2 are provided for heating and cooling.

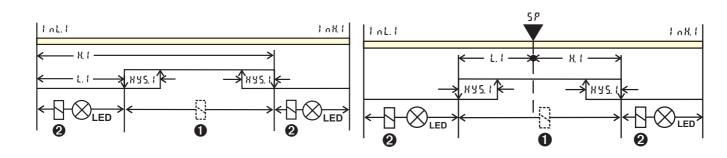
Dependent of configuration ([a n F / L [] [b / P | d.2), switch-over to the second parameter set ([a n F / L [] [b / P | d.2) is via one of digital inputs di1, di2, di3, key [F] or interface (OPTION).


Self-tuning is always done using the active parameter set, i.e. the second parameter set must be active for optimizing.




3.8 Alarm handling


Max. three alarms can be configured and assigned to the individual outputs. Generally, outputs <code>Iut.l.</code> <code>Iut.b</code> can be used each for alarm signalling. If more than one signal is linked to one output the signals are OR linked. Each of the 3 limit values <code>L.in.l...L.in.3</code> has 2 trigger points <code>H.x</code> (Max) and <code>L.x</code> (Min), which can be switched off individually (parameter = "<code>IFF</code>"). Switching difference <code>HY5.x</code> and delay <code>dEL.x</code> of each limit value is adjustable.


- ① Operaing principle absolute alarm
 L. I = *IFF*
- ② Operating principle **relative** alarm L. I = II F F

- **2**: normally open ([anF/ ak.x/ ak.x/ ak.k] = ak.x

The variable to be monitored can be selected seperately for each alarm via configuration

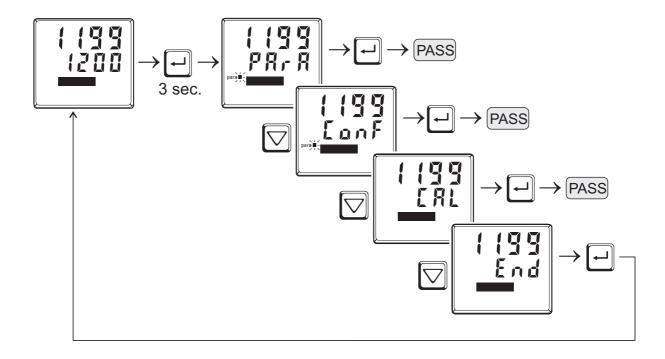
The following variables can be monitored:

- process value
- control deviation xw (process value set-point)
- control deviation xw + suppression after start-up or set-point change After switching on or set-point changing, the alarm output is suppressed, until the process value is within the limits for the first time. At the latest after expiration of time 10 ₺ 1, the alarm is activated. (₺ 1 = integral time 1; parameter → ₺ n ₺ r)

If $\mathbf{k} \cdot \mathbf{l}$ is switched off $(\mathbf{k} \cdot \mathbf{l} = \mathbf{D} \mathbf{F} \mathbf{F})$, this is interpreted as ∞ , i.e. the alarm is not activated, before the process value was within the limits once.

- Measured value INP1
- Measured value INP2
- Measured value INP3
- effective set-point Weff
- correcting variable y (controller output)
- Deviation from SP internal
- Process value x2

If measured value monitoring + alarm status storage is chosen ($L \cap F / L \cap / F \cap c.x = 2/4$), the alarm relay remains switched on until the alarm is resetted in the error list ($L \cap I... = 1$).



3.9 Operating structure

After supply voltage switch-on, the controller starts with the **operating levels**. The controller status is as before power off.

PRr R - level: At PRr R - level, the right decimal point of the bottom

display line is lit continuously.

[anf - level: At [anf - level, the right decimal point of bottom

display line blinks

When safety switch **Loc** is open, only the levels enabled by means of 8800/8840 configurator (engineering tool) are visible and accessible by entry of the password also adjusted by means of 8800/8840 configurator (engineering tool). Individual parameters accessible

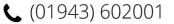
without password must be copied to the extended operating level.

Factory setting: Safety switch **Loc** closed: all levels accessible without restriction, password **PR55** = **DFF**.

All levels locked with a password are locked only if safety switch **Loc** is closed.

4 Configuration level

4.1 Configuration survey


E a	LonF Configuration level												
	Control and self-tuning	1 n.P. (Input 1	7 n P.2 Input 2	1 0 P.3 Input 3	لا رمَ Limit value functions	ជប £. (Output 1	ជាប្រខ.ក Output 2	auk.3 Output 3	ពីប្រម.។ Output 4	ពួក ೬.5 Output 5	ជីរ. ೬.5 Output 6	L O.C.) Digital inpu ts	Display, operation, interface
	5P.Fn		1.Fnc	1.Fnc	Fnc.1	0.Rc Ł		0.E Y P	0.E Y P			Lir	bxud
	C.Ł Y P	SEYP	SEYP	5.L in	Src. 1	3. (0.R c Ł	0.Rc Ł			5 <i>P.</i> 2	Rddr
	E.Fnc	5.L in		5.6 Y P	Fnc.2	9.2		Y. (4. (5 P.E	Prey
		[orr	l n.F	Earr	5 r c.2	L iñ. l	_	4.2	9.2	1		9.2 9.8	9EFA
	ňRn			l n.F	Fnc.3	L 18.2		L iñ. l	L iñ. l	See output 1	See output 1	Y.E	dP.Rd
	E.Rc E				5 r c.3	L 10.3	out	L iñ.2	L 10.2	no	no	ňŘn	b c.u P
	FRIL				18.3K	dRc.R		L 10.3		See	See	C.oFF	02
	r n [i.]				L P.R L	L P.R.L		dRc.R	dRc.R			ň.L o c	Un it
	r n 5.X				dRc.R	XE.RL		L P.R L	L P.R L			Err.r	dP
	[7 [F					X E. S E			HE.RL			P 16.2	LEd
	LunE					P.End		XE.SE	X E. S E			1.5 45	d: 5P
	Strt					FRit		P.End				d iFn	E.dEL
						FR2		FR . (
						FR .3		FR2					
								FR .3					
								0 u Ł.0					
								0 u Ł. (
								0.5 r c	0.5 r c				

Adjustment:

- The configuration can be adjusted by means of keys $\square \nabla$.
- Transition to the next configuration is by pressing key \square .
- After the last configuration of a group, don't is displayed and followed by automatic change to the next group

Return to the beginning of a group is by pressing the - key for 3 sec.

4.2 Configuration parameters

Entr

Name	Value range	Description	Default
5P.Fn		Basic configuration of setpoint processing	0
	0	set-point controller can be switched over to external set-point (-> LULI / 5 P.E)	
	8	standard controller with external offset (5 P.E)	
[.Ł Y P		Calculation of the process value	0
	0	standard controller (process value = $x1$)	
	1	ratio controller (x1/x2)	
	2	difference (x1 - x2)	
	3	Maximum value of x1 and x2. It is controlled with the bigger value. At sensor failure it is controlled with the remaining actual value.	
	4	Minimum value of x1 and x2. It is controlled with the smaller value. At sensor failure it is controlled with the remaining actual value.	
	5	Mean value (x1, x2). With sensor error, controlling is continued with the remaining process value.	
	6	Switching between x1 and x2 (-> L @ L I / I . L h L)	
	7	O ₂ function with constant sensor temperature	
	8	O ₂ function with measured sensor temperature	
E.Fnc		Control behaviour (algorithm)	1
	0	on/off controller or signaller with one output	
	1	PID controller (2-point and continuous)	
	2	Δ / Y / Off, or 2-point controller with partial/full load switch-over	
	3	2 x PID (3-point and continuous)	
	4	3-point stepping controller	
	5	3-point stepping controller with position feedback Yp	
	6	continuous controller with integrated positioner	
E.d (F		Output action of the PID controller derivative action	0
	0	Derivative action acts only on the measured value.	
	1	Derivative action only acts on the control deviation (set-point is also differentiated)	
ňÄn		Manual operation permitted	0
	0	no	
	1	yes (→LOGI /ñRn)	
E.Rc E		Method of controller operation	0
	0	inverse, e.g. heating	
	1	direct, e.g. cooling	
FR: L		Behaviour at sensor break	1
	0	controller outputs switched off	
	1	y = Y2	
	2	y = mean output. The maximum permissible output can be adjusted with parameter 30.4. To prevent determination of inadmissible values, mean value formation is only if the control deviation is lower than parameter 2.30.	

Name	Value range	Description	Default
r n L.L	-19999999	X0 (low limit range of control)	-100
r n 5.X	-19999999	X100 (high limit range of control)	1200
[7][Characteristic for 2-point- and 3-point-controllers	0
	0	standard	
	1	water cooling linear	
	2	water cooling non-linear	
	3	with constant cycle (see page 51)	
ŁwnE		Auto-tuning at start-up (see page 16)	0
	0	At start-up with step attempt, at set-point with impulse attempt	
	1	At start-up and at set-point with impulse attempt. Setting for fast controlled systems (e.g. hot runner control)	
	2	Always step attempt at start-up	
Strt		Start of auto-tuning	0
	0	Manual start of auto-tuning	
	1	Manual or automatic start of auto-tuning at power on or when oscillating is detected	
Adt0		Optimization of T1, T2 (only visible with 8800/8840 configurator!)	0
	0	Automatic optimization	
	1	No optimization	

1 rnLL and rnLX are indicating the range of control on which e.g. the self-tuning is referring

1 nP. 1

Name	Value range	Description	Default
1.Fnc		INP1 function selection	7
	0	No function (following INP data are skipped)	
	1	Heating current input	
	2	External set-point 5P.E (switch-over -> L GGI / 5P.E)	
	3	Position feedback Yp	
	4	Second process value x2 (ratio, min, max, mean)	
	5	External positioning value Y.E (switch-over → L UL) / Y.E)	
	6	No controller input (e.g. limit signalling instead)	
	7	Process value x1	

Name	Value range	Description	Default
5.E Y P		Sensor type selection	1
	0	thermocouple type L (-100900°C), Fe-CuNi DIN	
	1	thermocouple type J (-1001200°C), Fe-CuNi	
	2	thermocouple type K (-1001350°C), NiCr-Ni	
	3	thermocouple type N (-1001300°C), Nicrosil-Nisil	
	4	thermocouple type S (01760°C), PtRh-Pt10%	
	5	thermocouple type R (01760°C), PtRh-Pt13%	
	6	thermocouple type T (-200400°C), Cu-CuNi	
	7	thermocouple type C (02315°C), W5%Re-W26%Re	
	8	thermocouple type D (02315°C), W3%Re-W25%Re	
	9	thermocouple type E (-1001000°C), NiCr-CuNi	
	10	thermocouple type B (0/1001820°C), PtRh-Pt6%	
	18	special thermocouple	
	20	Pt100 (-200.0 100,0 °C)	
	21	Pt100 (-200.0 850,0 °C)	
	22	Pt1000 (-200.0 850.0 °C)	
	23	special 04500 Ohm (preset to KTY11-6)	
	24	special 0450 Ohm	
	30	020mA / 420mA 1	
	40	010V / 210V	
	41	special -2,5115 mV 1	
	42	special -251150 mV	
	50	potentiometer 0160 Ohm	
	51	potentiometer 0450 Ohm	
	52	potentiometer 01600 Ohm	
	53	potentiometer 04500 Ohm	
5.L in		Linearization (only at 5.5 4P = 23 (KTY 11-6), 24 (0450), 30 (020mA), 40 (010V), 41 (0100mV) and 42 (special -251150 mV))	0
	0	none	
	1	Linearization to specification. Creation of linearization table with 8800/8840 configurator (engineering tool) possible. The characteristic for KTY 11-6 temperature sensors is preset.	
Lorr		Measured value correction / scaling	0
	0	Without scaling	
	1	Offset correction (at [AL level)	
	2	2-point correction (at [RL level)	
	3	Scaling (at PR R level)	
l n.F	-19999999	Alternative value for error at INP1	OFF
fAI1		Forcing INP1 (only visible with 8800/8840 configurator!)	0
	0	No forcing	
	1	Forcing via serial interface	

1 with current and voltage input signals, scaling is required (see chapter 5.3)

1 nP.2

Name	Value range	Description	Default
1.Fnc		Function selection of INP2	1
	0	no function (subsequent input data are skipped)	
	1	heating current input	
	2	External set-point 5 P.E (switch-over -> L 061 / 5 P.E)	
	3	Position feedback Yp	
	4	Second process value x2 (ratio, min, max, mean)	
	5	External positioning value Y.E (switch-over \rightarrow L DLI / Y.E)	
	6	no controller input (e.g. transmitter input instead)	
	7	Process value x1	
5.E Y P		Sensor type selection	30
	30	020mA / 420mA 1	
	31	050mA AC 1	
	50	Potentiometer (0160 Ohm) 1	
	51	Potentiometer (0450 Ohm) 1	
	52	Potentiometer (01600 Ohm) 1	
	53	Potentiometer (04500 Ohm) 1	
Earr		Measured value correction / scaling	0
	0	Without scaling	
	1	Offset correction (at [RL level)	
	2	2-point correction (at ERL level)	
	3	Scaling (at PRr R level)	
l n.F	-19999999	Alternative value for error at INP2	OFF
fAI2		Forcing INP2 (only visible with 8800/8840 configurator!)	0
	0	No forcing	
	1	Forcing via serial interface	

1 with current and voltage input signals, scaling is required (see chapter 5.3)

1 nP.3

Name	Value range	Description	Default
1.Fnc		Function selection of INP3	1
	0	no function (subsequent input data are skipped)	
	1	heating current input	
	2	External set-point 5 P.E (switch-over -> L 0 G 1 / 5 P.E)	
	3	Yp input	
	4	Second process value X2	
	5	External positioning value Y.E (switch-over → L III / Y.E)	
	6	no controller input (e.g. transmitter input instead)	
	7	Process value x1	

Name	Value range	Description	Default
5.E Y P		Sensor type selection	30
	0	thermocouple type L (-100900°C), Fe-CuNi DIN	
	1	thermocouple type J (-1001200°C), Fe-CuNi	
	2	thermocouple type K (-1001350°C), NiCr-Ni	
	3	thermocouple type N (-1001300°C), Nicrosil-Nisil	
	4	thermocouple type S (01760°C), PtRh-Pt10%	
	5	thermocouple type R (01760°C), PtRh-Pt13%	
	6	thermocouple type T (-200400°C), Cu-CuNi	
	7	thermocouple type C (02315°C), W5%Re-W26%Re	
	8	thermocouple type D (02315°C), W3%Re-W25%Re	
	9	thermocouple type E (-1001000°C), NiCr-CuNi	
	10	thermocouple type B (0/1001820°C), PtRh-Pt6%	
	18	special thermocouple	
	20	Pt100 (-200.0 100,0 °C)	
	21	Pt100 (-200.0 850,0 °C)	
	22	Pt1000 (-200.0 850.0 °C)	
	23	special 04500 Ohm (preset to KTY11-6)	
	24	special 0450 Ohm	
	30	020mA / 420mA 1	
	41	special -2,5115 mV	
	42	special -25115 0mV	
	50	potentiometer 0160 Ohm	
	51	potentiometer 0450 Ohm	
	52	potentiometer 01600 Ohm	
	53	potentiometer 04500 Ohm	
5.L in		Linearization (only at 5.는 날부 = 23,24,30,41 and 42 adjustable)	0
	0	none	
	1	Linearization to specification. Creation of linearization table with 8800/8840 configurator (engineering tool) possible. The characteristic for KTY 11-6 temperature sensors is preset.	
Earr		Measured value correction / scaling (only at 5.는 날부 = 23,24,30,41 and 42 adjustable)	0
	0	Without scaling	
	1	Offset correction (at LAL level)	
	2	2-point correction (at LRL level)	
	3	Scaling (at PR R level)	
	4	Automatic calibration (DAC)	
l n.F	-19999999	Alternative value for error at INP3	OFF
fAI3		Forcing INP3 (only visible with 8800/8840 configurator!)	0
	0	No forcing	
	1	Forcing via serial interface	

1 with current and voltage input signals, scaling is required (see chapter 5.3)

Liñ

Name	Value range	Description	Default
Fnc. 1		Function of limit 1	1
	0	switched off	
	1	measured value monitoring	
	2	Measured value monitoring + alarm status storage. A stored limit value can be reset via error list, F-key, -key or a digital input (-> L IIII / Err.r)	
	3	signal change (change/minute)	
	4	signal change and storage (change/minute)	
Src. 1		Source of imit 1	1
	0	process value	
	1	control deviation xw (process value - set-point)	
	2	control deviation xw (with suppression after start-up and set-point change)	
		After switch-on or set-point changing, the alarm output is suppressed, until the process value is within the limits for the first time. At the latest after elapse of time 10k . I the alarm is activated 10k . I is switched off 10k . I is switched off 10k . I is switched off 10k . I is is interpreted as 10k . In the alarm is not activated, before the process value was within the limits once.	
	3	measured value INP1	
	4	measured value INP2	
	5	measured value INP3	
	6	effective setpoint Weff	
	7	correcting variable y (controller output)	
	8	control variable deviation xw (actual value - internal setpoint) = deviation alarm to internal setpoint	
	9	difference x1 - x2 (utilizable e.g. in combination with process value function "mean value" for recognizing aged thermocouples	
Fnc.d		Function of limit 2	0
	0	switched off	
	1	measured value monitoring	
	2	Measured value monitoring + alarm status storage. A stored limit value can be reset via error list, F-key, -key or a digital input (-> LUL) / Err.r)	
	3	signal change (change/minute)	
	4	signal change and storage (change/minute)	

Name	Value range	Description	Default
5 r c.2		Source of limit 2	0
	0	process value	
	1	control deviation xw (process value - set-point)	
	2	control deviation xw (with suppression after start-up and set-point change)	
		After switch-on or set-point changing, the alarm output is suppressed, until the process value is within the limits for the first time. At the latest after elapse of time $10 \text{k} \cdot \text{l}$ the alarm is activated $10 \text{k} \cdot \text{l}$ integral time 1; parameter $10 \text{k} \cdot \text{l}$ is switched off $10 \text{k} \cdot \text{l}$ is switched off $10 \text{k} \cdot \text{l}$ is interpreted as 10k i.e. the alarm is not activated, before the process value was within the limits once.	
	3	measured value INP1	
	4	measured value INP2	
	5	measured value INP3	
	6	effective setpoint Weff	
	7	correcting variable y (controller output)	
	8	control variable deviation xw (actual value - internal setpoint) = deviation alarm to internal setpoint	
	9	difference x1 - x2 (utilizable e.g. in combination with process value function "mean value" for recognizing aged thermocouples	
Fnc.3		Function of limit 3	0
	0	switched off	
	1	measured value monitoring	
	2	Measured value monitoring + alarm status storage. A stored limit value can be reset via error list, F-key, -key or a digital input (-> LULI / Err.r)	
	3	signal change (change/minute)	
	4	signal change and storage (change/minute)	

Name	Value range	Description	Default
5 r c.3		Source of limit 3	0
	0	process value	
	1	control deviation xw (process value - set-point)	
	2	control deviation xw (with suppression after start-up and set-point change)	
		After switch-on or set-point changing, the alarm output is suppressed, until the process value is within the limits for the first time. At the latest after elapse of time $10 \text{k} \cdot \text{l}$ the alarm is activated $ \text{k} \cdot \text{l} = \text{integral time 1}; \text{parameter} \rightarrow \text{knkr})$ If $ \text{k} \cdot \text{l} = \text{is switched off} (\text{k} \cdot \text{l} = 0), \text{this is interpreted as} \infty$, i.e. the alarm is not activated, before the process value was within the limits once.	
	3	measured value INP1	
	4	measured value INP2	
	5	measured value INP3	
	6	effective setpoint Weff	
	7	correcting variable y (controller output)	
	8	control variable deviation xw (actual value - internal setpoint) = deviation alarm to internal setpoint	
	9	difference x1 - x2 (utilizable e.g. in combination with process value function "mean value" for recognizing aged thermocouples	
XE.RL		Alarm heat current function (INP2)	0
	0	switched off	
	1	Overload short circuit monitoring	
	2	Break and short circuit monitoring	
L P.R.L		Monitoring of control loop interruption for heating	0
	0	switched off / inactive	
	1	active. If \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
dRc.R		DAC alarm function	0
	0	DAC alarm switched off / inactive	
	1	DAC alarm active	
Hour	OFF999999	Operating hours (only visible with 8800/8840 configurator!)	OFF
Swit	OFF999999		OFF

Dut. (

Name	Value range	Description	Default
O.Rc Ł		Method of operation of output OUT1	0
	0	direct / normally open	
	1	inverse / normally closed	
¥. (Controller output Y1	1
	0	not active	
	1	active	

Name	Value range	Description	Default
4.2		Controller output Y2	0
	0	not active	
	1	active	
L in. l		Limit 1 signal	0
	0	not active	
	1	active	
Lind		Limit 2 signal	0
	0	not active	
	1	active	
L 10.3		Limit 3 signal	0
	0	not active	
	1	active	
dRc.R		Valve monitoring (DAC)	0
	0	not active	
	1	active	
L P.R.L		Interruption alarm signal (LOOP)	0
	0	not active	
	1	active	
XE.RL		Heat current alarm signal	0
	0	not active	
	1	active	
XE.SE		Solid state relay (SSR) short circuit signal	0
	0	not active	
	1	active	
FRil		INP1 error signal	0
	0	not active	
	1	active	
FR2		INP2 error signal	0
	0	not active	
	1	active	
FR .3		INP3 error signal	0
	0	not active	
	1	aktiv	
fOut		Forcing OUT1 (only visible with 8800/8840 configurator!)	0
	0	No forcing	
	1	Forcing via serial interface	

0.4.2

Configuration parameters Out.2 = Out.1 except for: Default 4.1 = 0 4.2 = 1

0.4.3

Name	Value range	Description	Default
O.E YP		Signal type selection OUT3	0
	0	relay / logic (only visible with current/logic voltage)	
	1	0 20 mA continuous (only visible with current/logic/voltage)	
	2	4 20 mA continuous (only visible with current/logic/voltage)	
	3	010 V continuous (only visible with current/logic/voltage)	
	4	210 V continuous (only visible with current/logic/voltage)	
	5	transmitter supply (only visible without OPTION)	
O.Rc Ł		Method of operation of output OUT3 (only visible when O.TYP=0)	1
	0	direct / normally open	
	1	inverse / normally closed	
4. (Controller output Y1 (only visible when O.TYP=0)	0
	0	not active	
	1	active	
4.2		Controller output Y2 (only visible when O.TYP=0)	0
	0	not active	
	1	active	
L in. l		Limit 1 signal (only visible when O.TYP=0)	1
	0	not active	
	1	active	
Lind		Limit 2 signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	
L in.3		Limit 3 signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	
dRc.R		Valve monitoring (DAC) (only visible when O.TYP=0)	0
	0	not active	
	1	active	
L P.R L		Interruption alarm signal (LOOP) (only visible when O.TYP=0)	0
	0	not active	
	1	active	
XE.RL		Heating current alarm signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	
XE.5E		Solid state relay (SSR) short circuit signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	

Name	Value range	Description	Default
FRI		INP1 error (only visible when O.TYP=0)	1
	0	not active	
	1	active	
FR2		INP2 error (only visible when O.TYP=0)	0
	0	not active	
	1	active	
FR .3		INP3 error (only visible when O.TYP=0)	0
	0	not active	
	1	aktiv	
0 u Ł.0	-19999999	Scaling of the analog output for 0% (0/4mA or 0/2V, only visible when O.TYP=15)	0
Out. (-19999999	Scaling of the analog output for 100% (20mA or 10V, only visible when O.TYP=15)	100
0.5 r c		Signal source of the analog output OUT3 (only visible when O.TYP=15)	1
	0	not used	
	1	controller output y1 (continuous)	
	2	controller output y2 (continuous)	
	3	process value	
	4	effective set-point Weff	
	5	control deviation xw (process value - set-point)	
	6	measured value position feedback Yp	
	7	measured value INP1	
	8	measured value INP2	
	9	measured value INP3	
fOut		Forcing OUT3 (only visible with 8800/8840 configurator!)	0
	0	No forcing	
	1	Forcing via serial interface	

0.4.4

Name	Value range	Description	Default
O.E YP		Signal type selection OUT4	0
	0	relay / logic (only visible with current/logic voltage)	
	1	0 20 mA continuous (only visible with current/logic/voltage)	
	2	4 20 mA continuous (only visible with current/logic/voltage)	
	3	010 V continuous (only visible with current/logic/voltage)	
	4	210 V continuous (only visible with current/logic/voltage)	
	5	transmitter supply (only visible without OPTION)	
O.Act		Method of operation of output OUT4 (only visible when O.TYP=0)	0
	0	direct / normally open	
	1	inverse / normally closed	

Name	Value range	Description	Default
4. (Controller output Y1 (only visible when O.TYP=0)	0
	0	not active	
	1	active	
4.2		Controller output Y2 (only visible when O.TYP=0)	0
	0	not active	
	1	active	
L in. I		Limit 1 signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	
Lind		Limit 2 signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	
1 10.3		Limit 3 signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	
dRc.R		Valve monitoring (DAC) (only visible when O.TYP=0)	0
	0	not active	
	1	active	
L P.R L		Interruption alarm signal (LOOP) (only visible when O.TYP=0)	0
	0	not active	
	1	active	
HE.RL		Heat current alarm signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	
X E. S E		Solid state relay (SSR) short circuit signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	
FR!		INP1 error (only visible when O.TYP=0)	0
	0	not active	
	1	active	
FR2		INP2 error (only visible when O.TYP=0)	0
	0	not active	
	1	active	
FR 1.3		INP3 error (only visible when O.TYP=0)	0
	0	not active	
	1	aktiv	
0 u Ł.0	-19999999	Scaling of the analog output for 0% (0/4mA or 0/2V, only visible when O.TYP=15)	0
Out. (-19999999	Scaling of the analog output for 100% (20mA or 10V, only visible when O.TYP=15)	100

Name	Value range	Description	Default
0.5 r c		Signal source of the analog output OUT4 (only visible when O.TYP=15)	0
	0	not used	
	1	controller output y1 (continuous)	
	2	controller output y2 (continuous)	
	3	process value	
	4	effective set-point Weff	
	5	control deviation xw (process value - set-point)	
	6	measured value position feedback Yp	
fOut		Forcing OUT1 (only visible with 8800/8840 configurator!)	0
	0	No forcing	
	1	Forcing via serial interface	

0 .. 2.5

Configuration parameters Out.2 = Out.1 except for: Default 4.1 = 0

0 .. £.8

Configuration parameters Out.2 = Out.1 except for: Default 4.1 = 0 4.2 = 0

Is more than one signal chosen active as source, those signals are OR-linked.

1001

Name	Value range	Description	Default
1		Local / Remote switching (Remote: adjusting of all values by front keys is blocked)	0
	0	no function (switch-over via interface is possible)	
	1	always active	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
5 <i>P.</i> 2		Switching to second setpoint 5 P.2	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	

Name	Value range	Description	Default
5 P.E		Switching to external setpoint 5 P.E	0
	0	no function (switch-over via interface is possible)	
	1	always active	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
72		Y/Y2 switching	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
	6	- key switches	
4.5		Switching to fixed control output 4.E	0
	0	no function (switch-over via interface is possible)	
	1	always activated (manual station)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
	6	- key switches	
ňŘn		Automatic/manual switching	0
	0	no function (switch-over via interface is possible)	
	1	always activated (manual station)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
	6	- key switches	
[.off		Switching off the controller	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
<u> </u>	6	- key switches	
ň.L o c		Blockage of hand function	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	

Name	Value range	Description	Default
Err.r		Reset of all error list entries	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
	6	- key switches	
P 16.2		Switching of parameter set (Pb, ti, td)	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
1.6 % 6		Switching of the actual process value between Inp1 and X2	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
d iFn		Function of digital inputs (valid for all inputs)	0
	0	direct	
	1	inverse	
	2	toggle key function	
fDI1		Forcing di1 (only visible with 8800/8840 configurator!)	0
	0	No forcing	
	1	Forcing via serial interface	
fDI2		Forcing di2 (only visible with 8800/8840 configurator!)	0
	0	No forcing	
	1	Forcing via serial interface	
fDI3		Forcing di3 (only visible with 8800/8840 configurator!)	0
	0	No forcing	
	1	Forcing via serial interface	

othr

Name	Value range	Description	Default
bRud		Baudrate of the interface (only visible with OPTION)	2
	0	2400 Baud	
	1	4800 Baud	
	2	9600 Baud	
	3	19200 Baud	
Rddr	1247	Address on the interace (only visible with OPTION)	1

Name	Value range	Description	Default
Prey		Data parity on the interface (only visible with OPTION)	1
	0	no parity (2 stop bits)	
	1	even parity	
	2	odd parity	
	3	no parity (1 stopbit)	
9ET A	0200	Delay of response signal [ms] (only visible with OPTION)	0
02		Entering parameter for O ₂ in ppm or %	0
	0	Parameter for O ₂ -function in ppm	
	1	Parameter for O ₂ -function in %	
Unit		Unit	1
	0	without unit	
	1	°С	
	2	o.E.	
dP		Decimal point (max. number of digits behind the decimal	0
	0	point)	
	0	no digit behind the decimal point	
	1	1 digit behind the decimal point	
	2	2 digits behind the decimal point	
N 8= 4	3	3 digits behind the decimal point	
LEd		Function allocation of status LEDs 1/2/3/4	0
	10	OUT1, OUT2, OUT3, OUT4	
	11	Heating, alarm 1, alarm 2, alarm 3	
	12	Heating, cooling, alarm 1, alarm 2	
	13	Cooling, heating, alarm 1, alarm 2	
	14	Bus error	
	20	Y1, Y2, track1, track2	
	21	Y2, Y1, track1, track2	
	22	track1, track2, track3, track4	
d) 5P	010	Display luminosity	5
E.dEL	0200	Modem delay [ms]	0
		Additional delay time, before the received message is evaluated in the Modbus. This time is required, unless	
		messages are transferred continuously during modem	
		transmission.	
dP.Rd	0126	Profibus address	126
bc.uP		Behaviour as backup controller	0
	0	No backup functionality	
	1	With backup functionality	
FrEq		Switching 50 Hz / 60 Hz (only visible with 8800/8840 configurator!)	0
	0	50 Hz	
	1	60 Hz	
ICof		Block controller off (only visible with 8800/8840 configurator!)	0
	0	Released	
	1	Blocked	

Name	Value range	Description	Default
IAda		Block auto tuning (only visible with 8800/8840	0
		configurator!)	
	0	Released	
	1	Blocked	
IExo		Block extended operating level (only visible with 8800/8840 configurator!)	0
	0	Released	
	1	Blocked	
ILat		Suppression error storage	0
	0	Released	
	1	Blocked	
Pass	OFF9999	Password (only visible with 8800/8840 configurator!)	OFF
IPar		Block parameter level (only visible with 8800/8840 configurator!)	0
	0	Released	
	1	Blocked	
ICnf		Block configuration level (only visible with 8800/8840 configurator!)	0
	0	Released	
	1	Block	
ICal		Block calibration level (only visible with 8800/8840 configurator!)	0
	0	Released	
	1	Blocked	
CDis3		Display 3 controller operating level (only visible with 8800/8840 configurator!)	2
	0	No value / only text	
	1	Display of value	
	2	Output value as bargraph	
	3	Control deviation as bargraph	
	4	Process value as bargraph	
TDis3	260	Display 3 display alternation time [s] (only visible with 8800/8840 configurator!)	10
PDis3		display 3 programmer-operating level	0
	0	SegmNo., SegmType, Progrremaining time	
	1	SegmNo., SegmType, Segmremaining time	
	2	SegmNo., SegmType, net-time	
	3	SegmNo., SegmType, Progrremaining time	
	4	SegmNo., SegmType, Segmremaining time	
	5	SegmNo., SegmType, net-time	
T.dis3	8 characters	Text display 3	
T.InF1	8 characters	Text Inf.1	
T.InF2	8 characters	Text Inf.2	
t.PrG01	8 characters	Text Program 1	
t.PrG02	8 characters	Text Program 2	
• • •			
t.PrG16	8 characters	Text Program16	

L in (only visible with 8800/8840 configurate	840 configurator	8800/8840	v visible with	LIN
---	------------------	-----------	----------------	-----

Name	Value range	Description	Default
Lin		Linearization for inputs INP1 or INP3	
		Access to this table is always with selection special	
		Access to this table is always with selection special thermocouple for 1 a P. 1 or 1 a P. 3 or with setting 5.1 a = 1: special linearization for linearization.	
		Default: KTY 11-6 (04,5 kOhm)	
1 n. l	-999.099999	Input value 1	1036
		The signal is in $[\mu V]$ or in $[\Omega]$ dependent of input type	
II u. 1	0,0019999	Output value 1	-49,94
	,	Signal assigned to 1 n. 1	
1 n.2	-999.099999	Input value 2	1150
		The signal is in $[\mu V]$ or in $[\Omega]$ dependent of input type	
0 u.2	0,0019999	Output value 2	-38,94
		Signal assigned to 1 n.2	
:	:	<u>:</u>	:
1 n. 15	-999.099999	Input value 16	4470
		The signal is in $[\mu V]$ or in $[\Omega]$ dependent of input type	
8 u. 15	0,0019999	Output value 1 6	150,0
		Signal assigned to 1 n. 16	

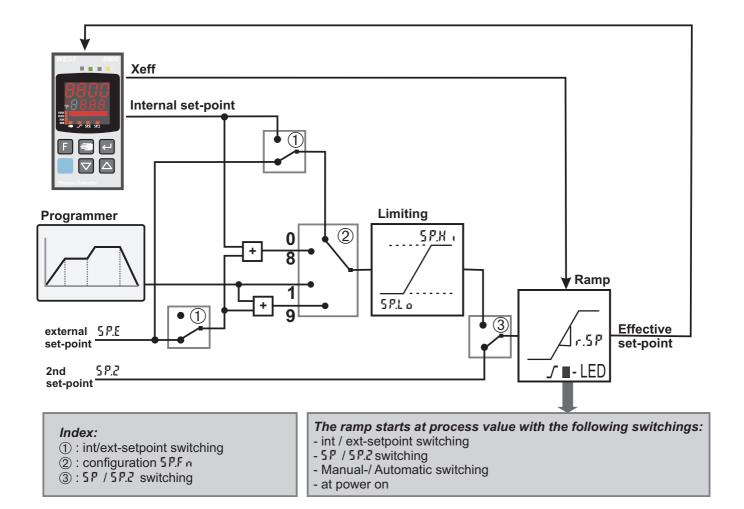
Resetting the controller configuration to factory setting (Default)

 \rightarrow chapter 11.1 (page 82)

8800/8840 configurator - the engineering tool for the West controller series

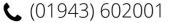
3 engineering tools with different functionality facilitating 8800 process controller configuration and parameter setting are available (see chapter 9: Accessory equipment with ordering information).

In addition to configuration and parameter setting, 8800/8840 configurator is used for data acquisition and offers long-term storage and print functions. 8800/8840 configurator is connected to 8800 process controller via the front-panel interface by means of PC (Windows 95 / 98 / NT) and a PC adaptor. Description 8800/8840 configurator: see chapter 8: 8800/8840 configurator (page 74).



4.3 Set-point processing

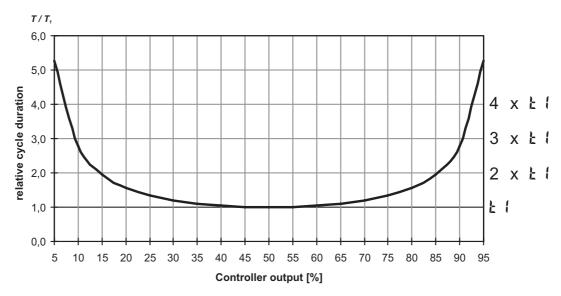
The set-point processing structure is shown in the following picture:



4.3.1 Set-point gradient / ramp

To prevent set-point step changes, parameter \rightarrow set-point \rightarrow r.5 P can be adjusted to a maximum rate of change. This gradient is effective in positive and negative direction..

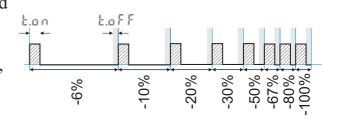
With parameter r.5P set to $\square FF$ (default), the gradient is switched off and set-point changes are realized directly. (for parameter: see page 48)



4.4 Switching behavior

With 8800 process controller, configuration parameter **LYLL** (**Lonf/Intr/ LYLL**) can be used for matching the cycle time of 2-point and 3-point controllers. This can be done using the following 4 methods.

4.4.1 Standard ($[\ \ \ \ \ \ \ \ \ \]$)

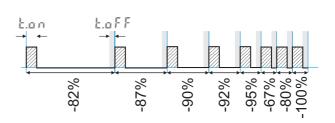

The adjusted cycle times ξ and ξ are valid for 50% or -50% correcting variable. With very small or very high values, the effective cycle time is extended to prevent unreasonably short on and off pulses. The shortest pulses result from $\frac{1}{4} \times \xi$ or $\frac{1}{4} \times \xi$. The characteristic curve is also called "bath tub curve"

Parameters to be adjusted: L: min. cycle time 1 (heating) [s] (PArA/Intr) L2: min. cycle time 2 (cooling) [s]

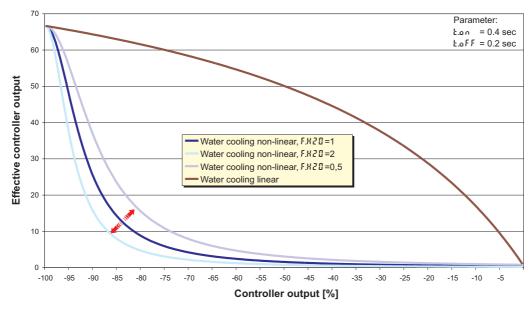
For heating (\$\frac{4}{1}\$), the standard method (see chapter 4.4.1) is used. For cooling (\$\frac{4}{2}\$), a special algorithm for cooling with water is used. Generally, cooling is enabled only at an adjustable process temperature (£.#2\$\frac{1}{2}\$), because low temperatures prevent evaporation with related

cooling, whereby damage to the plant is avoided. The cooling pulse length is adjustable using parameter **Ł.o.** and is fixed for all output values.

The "off" time is varied dependent of output value. Parameter $\mathbf{k}.\mathbf{a}\mathbf{F}\mathbf{F}$ is used for determining the min "off" time. For output of a shorter off pulse, this pulse is suppressed, i.e. the max. effective cooling output value is calculated according to formula $\mathbf{k}.\mathbf{a}\mathbf{n} / (\mathbf{k}.\mathbf{a}\mathbf{n} + \mathbf{k}.\mathbf{a}\mathbf{F}\mathbf{F}) \cdot 100\%$.


Parameters to be adjusted: E.H 2 [1]: minimum temperature for water cooling

(PRrR/Intr) Lon: pulse duration water cooling


E.off: minimum pause water cooling

4.4.3 Switching attitude non-linear ([2][L=2])

With this method, the cooling power is normally much higher than the heating power, i.e. the effect on the behaviour during transition from heating to cooling may be negative. The cooling curve ensures that the control intervention with 0 to -70% correcting variable is very weak.

Moreover, the correcting variable increases very quickly to max. possible cooling. Parameter F.H 2 II can be used for changing the characteristic curve. The standard method (see section 4.4.1) is also used for heating. Cooling is also enabled dependent of process temperature.

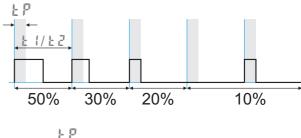
Parameters to be adjusted: F.H20: ada (PRrR/Entr) Wa

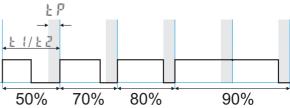
EXZI: adaptation of (non-linear) characteristic

Water cooling

E.of: Pulse duration water cooling **E.of**: min. pause water cooling

E.H20: min. temperature for water cooling



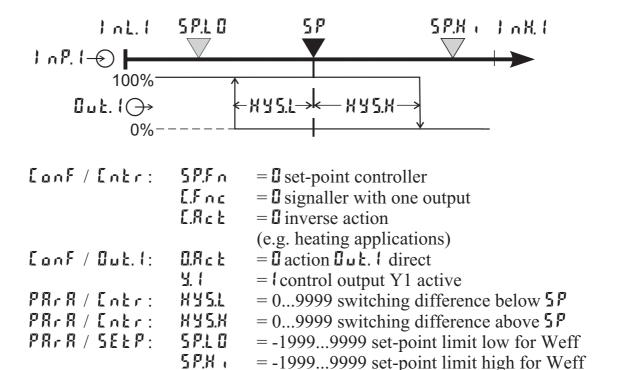


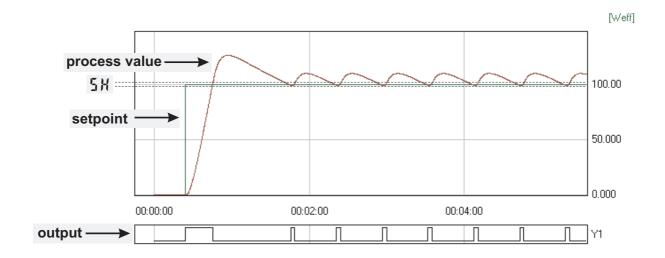
4.4.4 Heating and cooling with constant period ([3][L=3])

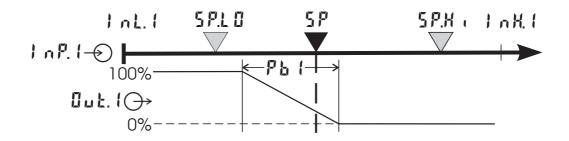
1 and £ ? are met in the overall output range. To prevent unreasonably short pulses, parameter £ ? is used for adjusting the shortest pulse duration. With small correcting values which require a pulse shorter than the value adjusted in £ ?, this pulse is suppressed. However, the controller stores the pulse and totalizes further pulses, until a pulse of duration £ ? can be output.

Parameters to be adjusted: (PRr R/Entr)

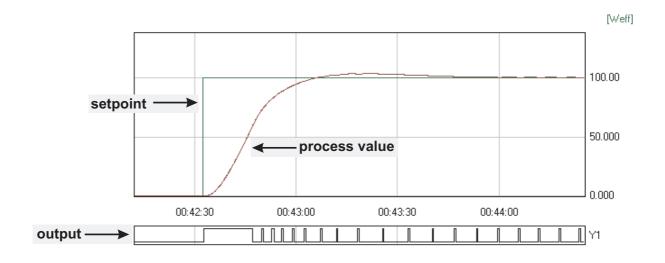
k!: Min. cycle time 1 (heating) [s] k!: min. cycle time 2 (cooling) [s]


E P: min. pulse length [s]

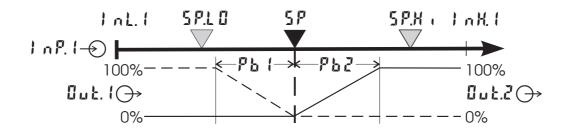



4.5 Configuration examples

4.5.1 On-Off controller / Signaller (inverse)



4.5.2 2-point controller (inverse)

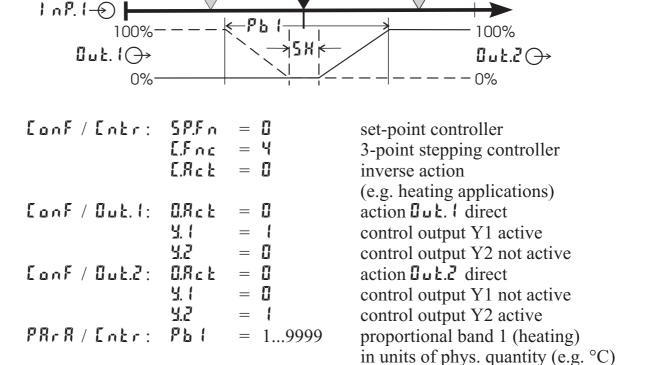


Eanf/Entr:	5 P.F n	= []	set-point controller
	E.Fnc	= {	2-point controller (PID)
	E.R c Ł	= 🛭	inverse action
			(e.g. heating applications)
Conf/Out.1:	0.R c Ł	= ₺	action [] u Ł. I direct
	¥. (= {	control output Y1 active
PRrR/Entr:	Pb!	= 19999	proportional band 1 (heating)
			in units of phys. quantity (e.g. °C)
	£ , {	= 0,19999	integral time 1 (heating) in sec.
	F9!	= 0,19999	derivative time 1 (heating) in sec.
	£ 1	= 0,49999	min. cycle time 1 (heating)
PR-R / SEŁP:	5 P.L 0	= -19999999	set-point limit low for Weff
	5 P.X ,	= -19999999	set-point limit high for Weff

For direct action, the controller action must be changed (Lonf / Lnkr / LRck = 1).

4.5.3 3-point controller (relay & relay)

[onf/[ntr:	SP.Fn E.Fnc		set-point controller 3-point controller (2xPID)
	E.Rc E	= 🛭	action inverse
			(e.g. heating applications)
Conf/Out.1:	0.R c Ł	= 🛭	action Duk. I direct
	4. (= {	control output Y1 active
	4.2	= [control output Y2 not active
Conf/Out.2:	0.R c E	= [action Iuk.2 direct
	4. (= []	control output Y1 not active
	4.2	= {	control output Y2 active
PRrR/Entr:	Pb (= 19999	proportional band 1 (heating)
			in units of phys. quantity (e.g. °C)
	P62	= 19999	proportional band 2 (cooling)
			in units of phys. quantity (e.g. °C)
	£ , {	= 0,19999	integral time 1 (heating) in sec.
	£ 12	= 0,19999	derivative time 2 (cooling) in sec.
	£ d !	= 0,19999	integral time 1 (heating) in sec.
	F95	= 0,19999	derivative time 2 (cooling) in sec.
	£ {	= 0,49999	min. cycle time 1 (heating)
	£ 2	= 0,49999	min. cycle time 2 (cooling)
	5 X	= 09999	neutr. zone in units of phys.quantity
PR-R / SEŁP:	5 P.L 0	= -19999999	set-point limit low for Weff
	5 P.X ,	= -19999999	set-point limit high for Weff


52X . 10X1

integral time 1 (heating) in sec.

4.5.4 3-point stepping controller (relay & relay)

InL.

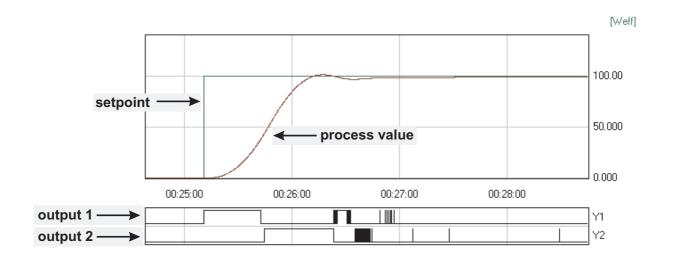
5 P.L 0

5 P

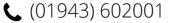
td = 0,1...9999 derivative time 1 (heating) in sec.

t = 0,4...9999 min. cycle time 1 (heating)

t = 0...9999 neutral zone in units of phy. quantity


t = 0,1...9999 min. pulse length in sec.

PRrR / SEEP: = 3...9999 actuator travel time in sec. = -1999...9999 set-point limit low for Weff

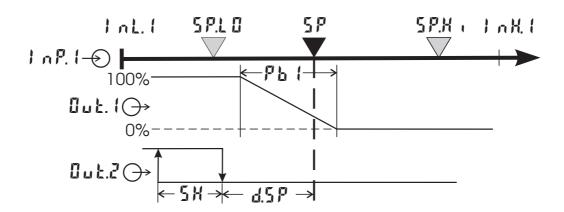

For direct action of the 3-point stepping controller, the controller output action must be changed (Lanf / Late / Late Late).

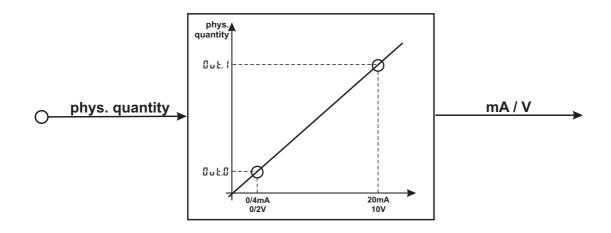
= 0,1...9999

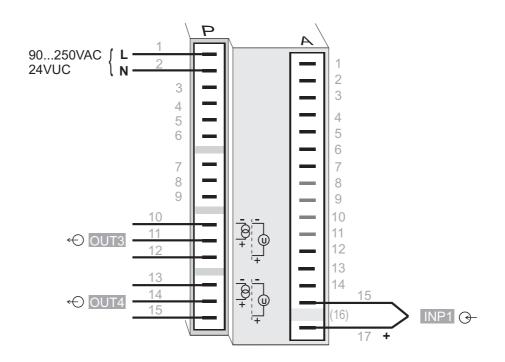
4 1

4.5.5 Continuous controller (inverse)

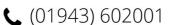
Conf/Entr:	5 P.F n	= 🛭	set-point controller
	E.Fnc	= {	continuous controller (PID)
	E.R c Ł	= 🛭	inverse action
			(e.g. heating applications)
Conf/Out.3:	0.1 y p	= 1/2	[] u E . 3 type (0/4 20mA)
	0.4.0	= -19999999	scaling analog output 0/4mA
	նսե.¦	= -19999999	scaling analog output 20mA
PRrR/Entr:	Pb!	= 19999	proportional band 1 (heating)
			in units of phys. quantity (e.g. °C)
	£ , !	= 0,19999	integral time 1 (heating) in sec.
	£ d 1	= 0,19999	derivative time 1 (heating) in sec.
	L 1	= 0,49999	min. cycle time 1 (heating)
PRrR / SEŁP:	5 P.L 0	= -19999999	set-point limit low for Weff
	5 P.X .	= -19999999	set-point limit high for Weff


- For direct action of the continuous controller, the controller action must be changed (IonF / Intr / I.Rct = 1).
- To prevent control outputs [] u k. ! and [] u k. ? of the continuous controller from switching simultaneously, the control function of outputs [] u k. I and [] u k. I amust be switched off ([ConF]/[Cut]. I and [Cut]/[2]. I and [Sut]/[2].

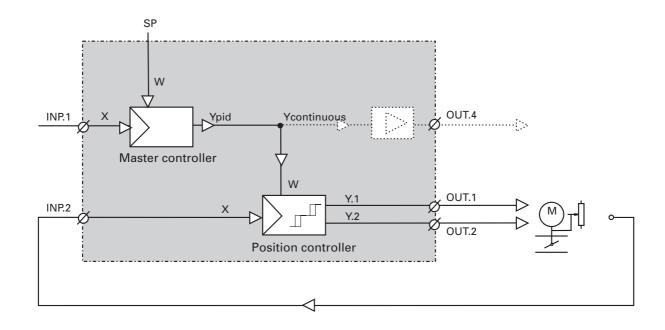

4.5.6 Δ - Y - Off controller / 2-point controller with pre-contact

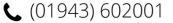


Eanf/Entr: SPFn set-point controller E.F.n.c = 2 Δ -Y-Off controller E.R.c.E = [inverse action (e.g. heating applications) Conf/Out.1: O.Rc E action [] L. I direct 4.1 - 1 control output Y1 active = [control output Y2 not active 4.2 Eanf / But.2: = 11 action Duk. 2 direct 0.8 c b = [4.1 control output Y1 not active 4.2 control output Y2 active PROB/Entr: Pb (1...9999 proportional band 1 (heating) in units of phys. quantity (e.g. °C) = 0,1...99991 1 integral time 1 (heating) in sec. 201 = 0,1...9999derivative time 1 (heating) in sec. **!** ! = 0,4...9999min. cycle time 1 (heating) switching difference 5 X = 0...9999= -1999...9999 trigg. point separation suppl. cont. d5P $\Delta / Y / Off$ in units of phys. quantity PR-R / SEEP: 5 P.L II = -1999...9999 set-point limit low for Weff SPX. = -1999...9999 set-point limit high for Weff



4.5.7 8800 process controller with measured value output




4.5.8 Continuous controller with integrated positioner ($\sum r \geq r / \sum r \leq 5$)

This is basically a cascade. A tracking controller with three-point stepping behaviour which operates with Yp as process value (INP.2 / INP.3) is used with the continuous controller.

Conf/Entr	5 P.F n E.F n c		Setpoint controller Continuous controller with integrated positioner
	E.Act	= 🗓	Direction of operation invers (e.g. heating)
Conf/InP.2:	1.Fnc	= 3	Position featback Yp
	5.E Y P	= 50	Sensor e.g. potentiometer 0160Ω
Conf / Out.1:	0.Rc E 4. I 4.2		Direction of operation Duk . I direct Controller output Y1 activ Controller output Y2 not activ
Conf / Out.2:	0.Rc E 4. I 4.2	= 🛭	Direction of operation [1] L.2 direct Controller output Y1 not activ Controller output Y2 activ
PRrR / Entr:	Pb (= 0,19999	Proportional band 1 (heating) in phys. units (e.g. °C)
	£ . 1	= 19999	Integral action time 1 (heating) in sec.
	£ d	= 19999	Derivative action time t 1 (heating) in sec.
	£ 1	= 0,49999	Minimal cycle time 1 (heating)
	5 X	= 09999	Neutral zone in phys. units (e.g.°C)

5 Parameter setting level

5.1 Parameter survey

PROR	Parame	ter sett	ing lev	el			
Lっとr Control and self-tuning	PRr.2 2. set of parameters	SEEP Set-point and process value	n P. (Input 1	1 n P.2 Input 2	1 n P.3 Input 3	لًا رِيْ Limit value functions	End
Pb (Pb 12	5 P.L o	InL.I	1 nL.2	InL.3	L. (
P62	P622	SP.X .	0 u L. 1			H. (
Eil	E 112	5 P.Z	1.861	1 n X.2	1 n X.3	X Y 5. (
£ 12	£ 122	r.5 <i>P</i>	t	0 u X.2	0 u X.3	dEL.I	
Edl	F915		Ł F. 1	£ F.2	Ł F.3	L.2	
£ d 2	F955		E.Ł c		E.Ł c	H.2	
Ł١						X Y 5.2	
£ 2						dEL.2	
SX						L.3	
X Y S.L						X.3	
X Y S.X						XY5.3	
d.5 P						dEL.3	
Ł P						HE.R	
<u> </u>							
Y.L o							
4.H .							
45							
A D							
ያሕ <mark>ጸ</mark>							
L.Yñ							
E.X 2 0							
Ł.on							
Ł.oFF							
FX2							
off5							
EEAP							

Adjustment:

- The parameters can be adjusted by means of keys $\square \nabla$
- Transition to the next parameter is by pressing key
- After the last parameter of a group, don E is displayed, followed by automatic change to the next group.

Return to the beginning of a group is by pressing the key for 3 sec. If for 30 sec. no keypress is excecuted the controler returns to the process value and setpoint display (Time Out = 30 sec.)

5.2 Parameters

Entr

Name	Value range	Description	Default
Pb (19999 🕦	Proportional band 1 (heating) in phys. dimensions (e.g. °C)	100
P62	19999 🕦	Proportional band 2 (cooling) in phys. dimensions (e.g. °C)	100
Eil	0,19999	Integral action time 1 (heating) [s]	180
£ 12	0,19999	Integral action time 2 (cooling) [s]	180
£ d (0,19999	Derivative action time 1 (heating) [s]	180
£ d Z	0,19999	Derivative action time 2 (cooling) [s]	180
£ 1	0,49999	Minimal cycle time 1 (heating) [s]. The minimum impulse is 1/4 x t1	10
£ 2	0,49999	Minimal cycle time 2 (heating) [s]. The minimum impulse is 1/4 x t2	10
SX	09999	Neutral zone or switching differential for on-off control [phys. dimensions)	2
X Y 5.L	09999	Switching difference Low signaller [engineering unit]	1
X Y 5.X	09999	Switching difference High signaller [engineering unit]	1
d.5 P	-19999999	Trigger point seperation for additional contact Δ / Y / Off [phys. dimensions]	100
ŁP	0,19999	Minimum impulse [s]	OFF
<u> </u>	39999	Motor travel time [s]	60
72	-100100	2. correcting variable	0
Y.L o	-120120	Lower output limit [%]	0
7.X '	-120120	Upper output limit [%]	100
72	-100100	2. correcting variable	0
7.0	-100100	Working point for the correcting variable [%]	0
7 Y Y	-100100	Limitation of the mean value Ym [%]	5
L.Yň	09999	Max. deviation xw at the start of mean value calculation [phys. dimensions]	8
E.X 2 0	-19999999	Min. temperature for water cooling. Below the set temperature no water cooling happens	0
Ł.a n	0,19999	Impulse lenght for water cooling. Fixed for all values of controller output. The pause time is varied.	1
Ł.oFF	19999	Min. pause time for water cooling. The max. effective controller output results from £.o. \(\(\beta\).o. \(+\beta\). \(\beta\). \(\beta\).	10
F.X 2 0	0,19999	Modification of the (non-linear) water cooling characteristic (see page 50)	1
off5	-120120	Zero offset	0
EEAP	09999	Sensor temperature (in engineering units e.g. °C) With oxygen measurement (O_2) (see page 70)	750

Valid for ConF/okhr/dP = 0. With dP = 1/2/3 also 0,1/0,01/0,001 is possible.

PR-.2

Name	Value range	Description	Default
Pb 12	19999 ①	Proportional band 1 (heating) in phys. dimensions (e.g. °C), 2. parameter set	100
P622	19999 1	Proportional band 2 (cooling) in phys. dimensions (e.g. °C), 2. parameter set	100
F 155	0,19999	Integral action time 2 (cooling) [s], 2. parameter set	180
F + 12	0,19999	Integral action time 1 (heating) [s], 2. parameter set	180
F9 15	0,19999	Derivative action time 1 (heating) [s], 2. parameter set	180
F955	0,19999	Derivative action time 2 (cooling) [s], 2. parameter set	180

SEEP

Name	Value range	Description	Default
5 P.L 0	-19999999	Set-point limit low for Weff	-100
5 P.X .	-19999999	Set-point limit high for Weff	1200
5 P.Z	-19999999	Set-point 2.	0
r.5 <i>P</i>	09999	Set-point gradient [/min]	0 F F
SP	-19999999	Set-point (only visible with 8800/8840 configurator!)	0

5*P.L II* and **5***P.H* , should be within the limits of roll and roll see configuration \rightarrow Controller page 17

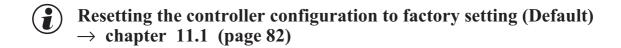
1 nP. 1

Name	Value range	Description	Default
InL.	-19999999	Input value for the lower scaling point	0
Out. (-19999999	Displayed value for the lower scaling point	0
1 nX.1	-19999999	Input value for the upper scaling point	20
0 X. (-19999999	Displayed value for the lower scaling point	20
Ł.F (0,09999	Filter time constant [s]	0,5
Etc.1	0100 (°C) 32212 (°F)	External cold-junction reference temperature (external TC)	OFF

1 nP.2

Name	Value range	Description	Default
1 n L.2	-19999999	Input value for the lower scaling point	0
0 u L.2	-19999999	Displayed value for the lower scaling point	0
1 n X.2	-19999999	Input value for the upper scaling point	50
0 u X.2	-19999999	Displayed value for the upper scaling point	50

Valid for $\mathbf{LonF}/\mathbf{othr}/\mathbf{dP} = \mathbf{D}$. With $\mathbf{dP} = \mathbf{I}/\mathbf{Z}/\mathbf{J}$ also 0,1/0,01/0,001 is possible.

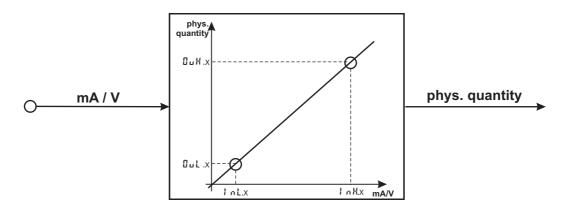

Name Value range		Description	Default
Ł.F.2 0,0999,9		Filter time constant [s]	0,5

1 nP.3

Name	Value range	Description	
InL.3	-19999999	Input value for the lower scaling point	0
Out.3	-19999999	Displayed value for the lower scaling point	0
1 n X.3	-19999999	Input value for the upper scaling point	20
DuX3	-19999999	Displayed value for the upper scaling point	20
Ł.F 3	0,0999,9	Filter time constant [s]	0,5
Et c.3	0100 (°C) 32212 (°F	External cold-junction reference temperature (external TC)	OFF

Liñ

Name	Value range	Description	Default
L. (-19999999	Lower limit 1	-10
H. 1	-19999999	Upper limit 1	10
X Y S. (09999	Hysteresis limit 1	1
dEL. (09999	Alarm delay from limit value 1	0
1.2	-19999999	Lower limit 2	OFF
X.2	-19999999	Upper limit 2	OFF
XY5.2	09999	Hysteresis limit 2	1
dEL.2	09999	Alarm delay from limit value 2	0
1.3	-19999999	Lower limit 3	OFF
X.3	-19999999	Upper limit 3	
XY5.3	09999	Hysteresis limit 3	1
dEL.3	09999	Alarm delay from limit value 3	0



5.3 Input scaling

When using current, voltage or resistance signals as input variables for $I \cap P$. I, $I \cap P$. I or/and $I \cap P$. I scaling of input and display values at parameter setting level is required. Specification of the input value for lower and higher scaling point is in the relevant electrical unit $(mA / V / \Omega)$.

5.3.1 Input $| \cap P. |$ and $| \cap P. |$

Parameters $\int nL.x$, $\int uL.x$, $\int nH.x$ and $\int uH.x$ are only visible if $\int uR.x / \int uR.x / \int uR.x = 3$ is chosen.

	5.E Y P	Input signal	l nL.x	OuL.x	l nXx	□ u X.x
I	30	0 20 mA	0	any	20	any
ı	(020mA)	4 20 mA	4	any	20	any
ı	40	0 10 V	0	any	10	any
ı	(010V)	2 10 V	2	any	10	any

In addition to these settings, $I \cap L.x$ and $I \cap H.x$ can be adjusted in the range $(0...20\text{mA} / 0...10\text{V} / \Omega)$ determined by selection of 5.L YP.

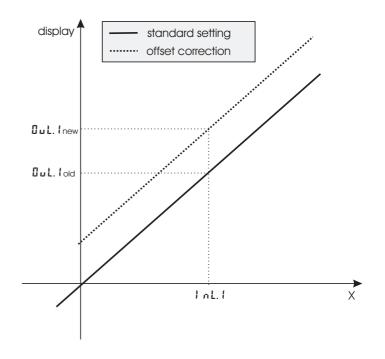
For using the predetermined scaling with thermocouple and resistance thermometer (Pt100), the settings for InLx and IuLx and for InHx and IuHx must have the same value.

Input scaling changes at calibration level (\rightarrow page 65) are displayed by input scaling at parameter setting level. After calibration reset ($\square FF$), the scaling parameters are reset to default.

5.3.2 Input | nP.2

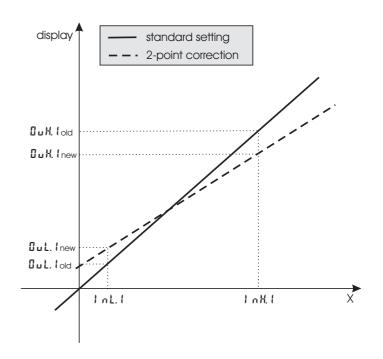
5.Ł Y <i>P</i>	Input signal	1 nL.2	0 u L.2	1 n X.2	0 u X.2
30	0 20 mA	0	any	20	any
31	0 50 mA	0	any	50	any

In addition to these settings, $I \cap L \cdot Z$ and $I \cap K \cdot Z$ can be adjusted in the range $(0...20/50 \text{mA}/\Omega)$ determined by selection of $5.E \ YP$.

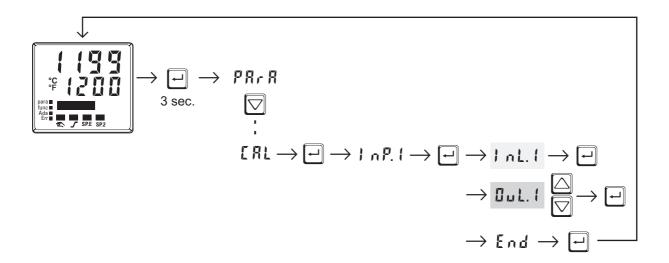

6 Calibration level

Measured value correction ([ERL]) is only visible if [EnF]/[nP.1/[err] = 1] or [EnF]/[err] is chosen.

The measured value can be matched in the calibration menu (**LRL**). Two methods are available:

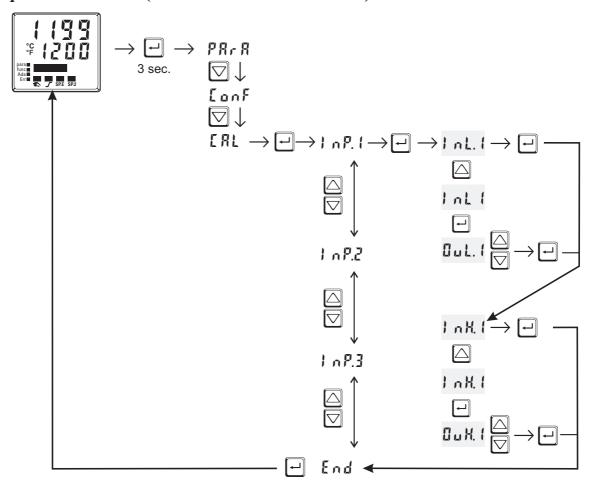

Offset correction ([onF/!nP.!/[orr = !):


• possible on-line at the process


2-point correction ([anf/lnP.l/Earr = 2):

• is possible off-line with process value simulator

Offset correction ([anF/]nP.1/[arr =1):


- Bul. 1: The display value of the scaling point is displayed.

 Before calibration, Bul. 1 is equal to 1 nl. 1.

 The operator can correct the display value by pressing keys \subsequently, he confirms the display value by pressing key \subsequently.

2-point correction ([anf/InP.I/[arr=2]):

- The display value of the lower scaling point is displayed.

 Before calibration, **Uul**. I equals Inl. I.

 The operator can correct the lower display value by pressing the keys. Subsequently, he confirms the display value by pressing key
- The input value of the upper scaling point is displayed. .

 The operator must adjust the upper input value by means of the process value simulator and confirm the input value by pressing key
- The parameters ([]uL.1, []uM.1) changed at [AL] level can be reset by adjusting the parameters below the lowest adjustment value ([]FF) by means of decrement key \square .

7 Special functions

7.1 DAC®— motor actuator monitoring (Digital Actor Control DAC®)

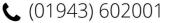
With all controllers with position feedback Yp, the motor actuator can be monitored for functional troubles. The DAC[®] function can be started by chosing the parameter $\mathcal{L}.Fnc = \mathbf{5}$ or $\mathbf{5}$ at the configuration level ($\mathcal{L}nf$):

- Lanf / Lnkr / L.Fnc = 5 3-point-stepping controller with position feedback Yp as potentiometer
- Lanf / Lner / L.Fnc = 6 Continuous controller with integrated positioner and position feedback Yp as potentiometer

• Lanf / $\square U = x / dR c = 1$ Motor actuator monitoring (DAC) aktive

The system detects the following stepping controller errors:

- defective motor
- defective capacitor (wrong rotating direction)
- wrong phase followers (wrong rotating direction)
- defective force transmission at spindle or drive
- excessive backlash due to wear
- jamming of the control valve e.g. due to foreign body


In these cases the controller will change to manual operation and the outputs will be switched off. Is the controller switched to automatic operation again or any modification is done the controller activates the DAC function again and the outputs will be setted.

Resetting of a DAC error:

After solving the technical problem the DAC error can be acknowledged in the error list. Thereafter the controller works again in normal operation mode.

See also chapter 3.4 "Mainenance manager / Error list", page 12 ff.

Functioning of the DAC function

No input filter should be defined for the Yp input (PRrR / InP.x / E.Fx = 0). Therewith no wrong detection of blocking or wrong method of operation can be recognized.

The automatic calibration can be used with drives outfitted with spring assembly.

Execution of the calibration:

It is controlled if the mean alteration between two messurements is enough for the DAC monitoring. The calibration will be stopped if the alteration between two messurements is too small.

The position of 0% is searched. Therefor the drive will be closed until there is no changing of the input signal for 0,5 sec.

Assuming that the drive is outfitted with spring assembly, the drive is opened for 2,8 sec. The drive should then still be within the spring assembly. This position is allocated and stored as 0%.

With the same procedure the position for 100% is allocated and stored.

Simultaneously the motor running time is determined and saved as parameter \(\mathbb{L} \). Afterwards the controller sets the drive in the position before calibration.

Was the controller in automatic mode before calibration it will be set to automatic mode again otherwise it remains in manual mode.

The following errors can be occure during calibration:

- the change of the Yp input is to small, no monitoring is possible
- the motion is in wrong direction
- the Yp input is broken

In these cases the automatic calibration will be stopped and the controller remains in manual mode.

- If the automatic calibration leads to no resonable results the calibration of the Yp input can be done manual.
- If the conroller reaches the positions of 0% or 100% the outputs will be switched off. Also in manual mode it is not possible to exceed these limits.
- Because no controller with continuouse output and Yp input is defined there won't be the DAC function for this controlling type.

7.2 O₂ measurement

This function is available only on the instrument version with INP3.

As the O₂-measurement result range can extend over many decades, automatic display switch-over between "%" and "ppm" was realized.

The instantaneous unit is displayed in the lower line.

With set-point changing via keys ▲ or ▼, the unit of the set-point and of the other parameters is displayed.

Lambda probes (λ probes) are used as sensors.

The electromotive force (in Volts) generated by λ probes is dependent of instantaneous oxygen content and temperature. Therefore, the 8800 process controller can only evaluate exact measurement results, if it knows the sensor temperature.

Distinction of heated and non-heated lambda probes is made. Both can be evaluated by the 8800 process controller.

Heated lambda probes

Controlled heating which ensures constant temperature is integrated in the heated λ probe. This temperature must be entered in the 8800 process controller parameter Probe temperature.

Parameter \rightarrow Controller \rightarrow Probe temperature \rightarrow °C (/°F - dependent of configuration)

Non-heated lambda probes

With the probe always operated at a fixed, known temperature, a procedure as used for a heated probe can be used.

A non-heated λ probe is used, unless the temperature is constant. In this case, the probe temperature in addition to the probe mV value must be measured. For this purpose, any temperature measurement with one of the analog inputs INP2 or INP3 can be used. During function selection, the input must be set to X2 (second process value).

7.2.1 Connection

Connect the input for the lambda probe to INP1.

Use terminals A15 and A17.

If necessary, temperature measurement must be connected to INP2 or INP3.

7.2.2 Configuration:

Oxygen measurement

Oxygen measurement with heated lambda probe

Controller \rightarrow Process value processing \rightarrow 7: O₂ functions with constant probe temperature

Oxygen measurement with non-heated lambda probe

Controller \rightarrow Process value processing \rightarrow O_2 functions with measured probe temperature

[ntr→[.typ	8	02+temp
------------	---	---------

Input 1 \rightarrow Function INP1 \rightarrow 7: process value X1

In **input** 1, the sensor type is set for one of the high-impedance voltage inputs:

Input $1 \rightarrow \text{Sensor type} \rightarrow 42$: special (-25...1150 mV) or

41: special (-2,5...115 mV)

Inp. (> 5.E yp	41	115 mV
$I \cap P.I \rightarrow 5.1 YP$	42	1150 mV

Input $1 \rightarrow$ meas. value correction \rightarrow 0: no correction

|--|

Temperature measurement (required with non-heated lambda probe)

Any temperature measurement with one of analog inputs INP2 or INP3 can be used. Select input X2 during function selection (second set-point).

With O₂ measurement, evaluation in ppm or % must be specified for all parameters related to the process value.
This is done centrally during configuration.

Other \rightarrow Parameter unit for $O_2 \rightarrow 0$: parameter for O_2 function in ppm 1: parameter for O_2 function in %

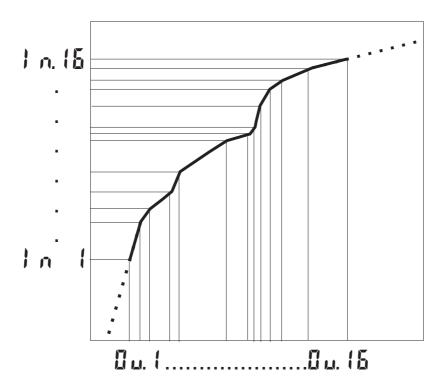
oŁhr→ 02	0	unit : ppm
oŁhr→ 02	1	unit:%


Whether the temperature of the non-heated λ probe is specified in °C or °F can be selected during configuration.

Other \rightarrow Unit \rightarrow 1: in Celsius

2: in Fahrenheit

othr → Unit	1	°C
othr→ Unit	2	°F


7.3 Linearization

Linearization for inputs INP1 or INP3

Access to table "L in" is always with selection of sensor type S.TYP = 18: special thermocouple in INP1 or INP3, or with selection of linearization 5.L in 1: special linearization.

Dependent of input type, the input signals are specified in μV or in Ohm dependent of input type.

With up to 16 segment points, non-linear signals can be simulated or linearized. Every segment point comprises an input (In. I...In. Ib) and an output (In. I...In. Ib). These segment points are interconnected automatically by means of straight lines. The straight line between the first two segments is extended downwards and the straight line between the two largest segments is extended upwards. I.e. a defined output value is also provided for each input value. When switching an In.x value to IFF, all other ones are switched off. Condition for these configuration parameters is an ascending order.

7.4 8800 process controller as Modbus master

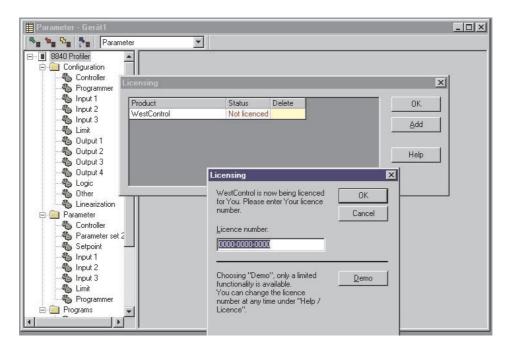
This function is only selectable with 8800/8840 configurator (engineering tool)!

Additions at he (only visible with 8800/8840 configurator!)

Name	Value range	Description	Default
MASt		Controller is used as Modbus master	0
	0	Slave	
	1	Master	
Cycl	0200	Cycle time [ms] for the Modbus master to transmit its data to the bus.	60
AdrO	165535	Target address to which the with AdrU specified data is given out on the bus.	1
AdrU	165535	Modbus address of the data that Modbus master gives to the bus.	1
Numb	0100	Number of data that should be transmitted by the Modbus master.	0

The 8800 process controller can be used as Modbus master (Lonf /othr / MASt = 1). The Modbus master sends ist data to all slaves (Broadcast message, controller adress 0). It transmits its data (modbus adress AdrU) cyclic with the cycle time Cycl to the bus. The slave controller receives the data transmitted by the masters and allocates it to the modbus target adress AdrO. If more than one data should be transmitted by the master controller (Numb > 1), the modbus adress AdrU indicates the start adress of the data that should be transmitted and **AdrO** indicates the first target adress where the received data should be stored. The following data will be stored at the logically following modbus target adresses.

With this it is possible e.g. to specify the process value of the master controller as set-point for the slave controllers.

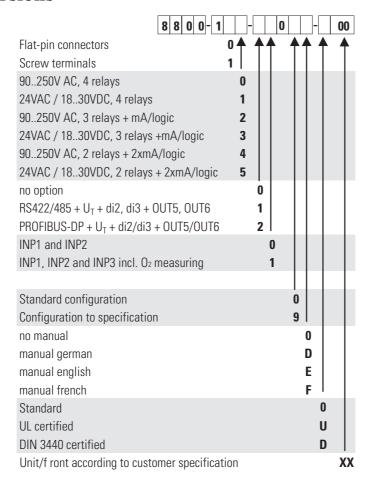


8 8800/8840 configurator

8800/8840 configurator is the projection environment for the controller series of West. The following 3 versions with graded functionality are available:

Functionality	Mini	Basic	Expert
parameter and configuration setting	yes	yes	yes
controller and control loop simulation	yes	yes	yes
download: writes an engineering to the controller	yes	yes	yes
online mode/ visualisation	SIM only	yes	yes
creation of user defined linearizations	yes	yes	yes
configuration of extended operating level	yes	yes	yes
upload: reads an engineering from the controller	SIM only	yes	yes
diagnosis function	no	no	yes
file, save engineering data	no	yes	yes
printer function	no	yes	yes
online documentation, help system	yes	yes	yes
measurement correction (calibration procedure)	yes	yes	yes
program editor	no	no	yes
data acquisition and trend function	SIM only	yes	yes
network and multiuser licence	no	no	yes
personal assistant function	yes	yes	yes
extended simulation	no	no	yes

The mini version is - free of charge - at your disposal as download at West homepage www.westinstruments.com or on the West-CD (please ask for).


At the end of the installation the licence number has to be stated or DEMO mode must be chosen. At DEMO mode the licence number can be stated subsequently under $Help \rightarrow Licence \rightarrow Change$.

9 Versions

Accessories delivered with the unit

Operating manual (if selected by the ordering code)

- 2 fixing clamps
- operating note in 12 languages

Accessory equipment with ordering information

Description			Order no.
Heating current transformer 50A AC			9404-407-50001
PC-adaptor for the front-panel interface			9407-998-00001
Standard rail adaptor			Insert order-no.
Operating manual	German		9499-040-70718
Operating manual	English		9499-040-70711
Operating manual	French		9499-040-70732
Interface description Modbus RTU	German		9499-040-70818
Interface description Modbus RTU	English		9499-040-70811
Interface description Profibus	German		9499-040-70918
Interface description Profibus	English		9499-040-70911
8800/8840 configurator (engineering tool)	Mini	Download	www.westinstruments.com
8800/8840 configurator (engineering tool)	Basic		Insert order-no.
8800/8840 configurator (engineering tool)	Expert		Insert order-no.

10 Technical data

INPUTS

PROCESS VALUE INPUT INP1

Resolution: > 14 bits

Decimal point: 0 to 3 digits behind the

decimal point

Dig. input filter: adjustable 0,000...9999 s

Scanning cycle: 100 ms

Measured value 2-point or offset correction

correction:

Thermocouples

 \rightarrow Table 1 (page 80)

Input resistance: $\geq 1 \text{ M}\Omega$ Effect of source resistance: $\geq 1 \text{ M}\Omega$

Cold-junction compensation

Maximal additional error: $\pm 0.5 \text{ K}$

Sensor break monitoring

Sensor current: $\leq 1 \,\mu\text{A}$

Configurable output action

Resistance thermometer

 \rightarrow Table 2 (page 80)

Connection: 3-wire Lead resistance: max. 30 Ohm

Input circuit monitor: break and short circuit

Special measuring range

8800/8840 Configurator (engineering tool) can be used to match the input to sensor KTY 11-6 (characteristic is stored in the controller).

Physical measuring range: 0...4500 Ohm

Linearization segments 16

Current and voltage signals

 \rightarrow Table 3 (page 80)

Span start, end of span: anywhere within measuring

range

Scaling: selectable -1999...9999

Linearization: 16 segments, adaptable

with 8800/8840

Configurator

Decimal point: adjustable

Input circuit monitor: 12,5% below span start

(2mA, 1V)

SUPPLEMENTARY INPUT INP2

Resolution: > 14 bits Scanning cycle: 100 ms

Heating current measurement

via current transformer (→ Accessory equipment)

Measuring range: 0...50mA AC

Scaling: adjustable -1999...0,000...9999 A

Current measuring range

Technical data as for INP1

Potentiometer

 \rightarrow Table 2 (page 80)

SUPPLEMENTARY INPUT INP3 (OPTION)

Resolution: > 14 bits Scanning cycle: 100 ms

Technical data as for INP1 except 10V range.

CONTROL INPUTS DI1, DI2

Configurable as switch or push-button! Connection of a potential-free contact suitable for switching "dry" circuits.

Switched voltage: 5 V Current: $100 \mu\text{A}$

CONTROL INPUTS DI2, DI3 (OPTION)

The digital input di2 located on the A-card and di2 located on the option card are or-linked. Configurable as switch or push-button! Optocoupler input for active triggering.

24 V DC external Nominal voltage

Current sink (IEC 1131 type 1)

Logic "0" -3...5 V Logic "1" 15...30 V Current requirement approx.. 5 mA

TRANSMITTER SUPPLY UT (OPTION)

Power: 22 mA $/ \ge 18 \text{ V}$

If the universal output OUT3 or OUT4 is used there may be no external galvanic connection between measuring and output circuits!

GALVANIC ISOLATION

 Safety isolation Function isolation

-	
	Process value input INP1
Mains supply	Supplementary input INP2
	Optional input INP3
	Digital input di1, di2
Relay OUT1	RS422/485 interface
Relay OUT2	Digital inputs di2, 3
Relay OUT3	Universal output OUT3
Relay OUT4	Universal output OUT4
	Transmitter supply U _T
	OUT5, OUT6

OUTPUTS

RELAY OUTPUTS OUT1...OUT4

Contact type: potential-free changeover

contact

Max.contact rating: 500 VA, 250 V, 2A at 48...62 Hz,

resistive load

Min. contact rating: 5V, 10 mA AC/DC

Operating life (electr.):

600.000 duty cycles with max.

contact rating

Note:

If the relays operate external contactors, these must be fitted with RC snubber circuits to manufacturer specifications to prevent excessive switch-off voltage peaks.

OUT3, 4 AS UNIVERSAL OUTPUT

Galvanically isolated from the inputs.

Freely scalable resolution: 11 bits

Current output

0/4...20 mA configurable.

Signal range: 0...approx.22mA

Max. load: \leq 500 Ω Load effect: no effect Resolution: \leq 22 μ A (0,1%) $\leq 40 \,\mu\text{A} (0.2\%)$ Accuracy

Voltage output

0/2...10V configurable

Signal range: 0...11 V Min. load: $\geq 2 k\Omega$ Load effect: no effect Resolution: $\leq 11 \text{ mV } (0.1\%)$ \leq 20 mV (0,2%) Accuracy

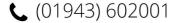
OUT3, 4 used as transmitter supply

 $22 \text{ mA} / \ge 13 \text{ V}$ Output power:

OUT3, 4 used as logic output

Load \leq 500 Ω 0/≤ 20 mA I nad $> 500 \Omega$ 0/> 13 V

OUTPUTS OUT5/6 (OPTION)


Galvanically isolated opto-coupler outputs. Grounded load: common positive voltage. Output rating: 18...32 VDC; ≤ 70 mA

Internal voltage drop: ≤ 1 V with Imax

Protective circuit: built-in against short circuit, overload, reversed polarity (free-wheel diode

for relay loads).

POWER SUPPLY

Dependent of order:

AC SUPPLY

90...260 V AC Voltage: 48...62 Hz Frequency: Power consumption approx. 7,0 VA

UNIVERSAL SUPPLY 24 V UC

AC voltage: 20,4...26,4 V AC 48...62 Hz Frequency: DC voltage: 18...31 V DC approx.. 7,0 VA Power consumption:

BEHAVIOUR WITH POWER FAILURE

Configuration, parameters and adjusted set-points, control mode:

Non-volatile storage in EEPROM

FRONT INTERFACE

Connection of PC via PC adapter (see "Accessory equipment"). The 8800/8840 Configurator software is used to configure, set parameters and operate the 8840 profiler.

BUS INTERFACE (OPTION)

Galvanically isolated

RS 422/485 Physical: Protocol: Modbus RTU Transmission speed: 2400, 4800, 9600, 19.200

bits/sec

Address range: 1...247 Number of controllers per bus:

Repeaters must be used to connect a higher number of controllers.

ENVIRONMENTAL CONDITIONS

Protection modes

Front panel: IP 65 (NEMA 4X)

Housing: IP 20 Terminals: IP 00

Permissible temperatures

For specified 0...60°C

accuracy:

Warm-up time: ≥ 15 minutes For operation: -20...65°C -40...70°C For storage:

Humidity

75% yearly average, no condensation

Shock and vibration

Vibration test Fc (DIN 68-2-6)

Frequency: 10...150 Hz Unit in operation: 1g or 0,075 mm Unit not in operation: 2g or 0,15 mm

Shock test Ea (DIN IEC 68-2-27)

Shock: 15q 11_{ms} Duration:

Electromagnetic compatibility

Complies with EN 61 326-1 (for continuous, non-attended operation)

GENERAL

Housing

Material: Makrolon 9415

flame-retardant

Flammability class: UL 94 VO, self-extinguishing

Plug-in module, inserted from the front

Safety test

Complies with EN 61010-1 (VDE 0411-1):

Overvoltage category II Contamination class 2

Working voltage range 300 V

Protection class II

Certifications

UL-approval

Electrical connections

- flat-pin terminals 1 x 6,3mm or 2 x 2,8mm to DIN 46 244 or
- screw terminals for 0,5 to 2,5mm²

Mounting

Panel mounting with two fixing clamps at top/bottom or right/left, High-density mounting possible

Mounting position: uncritical Weight: 0,27kg

Accessories delivered with the unit

Operating manual Fixing clamps

Table 1 Thermocouples measuring ranges

Ther	moelementtype	Measuring range		Accuracy	Resolution (Ø)
L	Fe-CuNi (DIN)	-100900°C	-1481652°F	≤ 2K	0,1 K
J	Fe-CuNi	-1001200°C	-1482192°F	≤ 2K	0,1 K
K	NiCr-Ni	-1001350°C	-1482462°F	≤ 2K	0,2 K
N	Nicrosil/Nisil	-1001300°C	-1482372°F	≤ 2K	0,2 K
S	PtRh-Pt 10%	01760°C	323200°F	≤ 2K	0,2 K
R	PtRh-Pt 13%	01760°C	323200°F	≤ 2K	0,2 K
T	Cu-CuNi	-200400°C	-328752°F	≤ 2K	0,05 K
C	W5%Re-W26%Re	02315°C	324199°F	≤ 2K	0,4 K
D	W3%Re-W25%Re	02315°C	324199°F	≤ 2K	0,4 K
Е	NiCr-CuNi	-1001000°C	-1481832°F	≤ 2K	0,1 K
B*	PtRh-Pt6%	0(100)1820°C	32(212)3308°F	≤ 2K	0,3 K

^{*} Specifications valid for 400°C

Table 2 Resistance transducer measuring ranges

Type	Signal Current	Measuring range		Accuracy	Resolution (\emptyset)
Pt100		-200100°C	-140212°F	≤ 1K	0,1K
Pt100		-200850°C	-1401562°F	≤ 1K	0,1K
Pt1000		-200850°C	-140392°F	≤ 2K	0,1K
KTY 11-6*		-50150°C	-58302°F	≤ 2K	0,05K
Spezial	0,2mA	04500			
Spezial		0	450		
Poti		0160		≤ 0,02 %	0,01 %
Poti	_	0450			
Poti		01600			
Poti		04500			

^{*}Or special

Table 3 Current and voltage measuring ranges

Measuring range	Input impedance	Accuracy	Resolution (Ø)
0-10 Volt	≈ 110 kΩ	≤ 0,1 %	0,6 mV
-2,5-115 mV	$\geq 1M\Omega$	≤ 0,1 %	6 μV
-25-1150 mV	$\geq 1M\Omega$	≤ 0,1 %	60 μV
0-20 mA	20 Ω	≤ 0,1 %	1,5 μΑ

11 Safety hints

This unit was built and tested in compliance with VDE 0411-1 / EN 61010-1 and was delivered in safe condition.

The unit complies with European guideline 89/336/EWG (EMC) and is provided with CE marking.

The unit was tested before delivery and has passed the tests required by the test schedule. To maintain this condition and to ensure safe operation, the user must follow the hints and warnings given in this operating manual.

The unit is intended exclusively for use as a measurement and control instrument in technical installations.

Warning

If the unit is damaged to an extent that safe operation seems impossible, the unit must not be taken into operation.

ELECTRICAL CONNECTIONS

The electrical wiring must conform to local standards (e.g. VDE 0100). The input measurement and control leads must be kept separate from signal and power supply leads.

In the installation of the controller a switch or a circuit-breaker must be used and signified. The switch or circuit-breaker must be installed near by the controller and the user must have easy access to the controller.

COMMISSIONING

Before instrument switch-on, check that the following information is taken into account:

- Ensure that the supply voltage corresponds to the specifications on the type label.
- All covers required for contact protection must be fitted.
- If the controller is connected with other units in the same signal loop, check that the equipment in the output circuit is not affected before switch-on. If necessary, suitable protective measures must be taken.
- The unit may be operated only in installed condition.
- Before and during operation, the temperature restrictions specified for controller operation must be met.

SHUT-DOWN

For taking the unit out of operation, disconnect it from all voltage sources and protect it against accidental operation.

If the controller is connected with other equipment in the same signal loop, check that other equipment in the output circuit is not affected before switch-off. If necessary, suitable protective measures must be taken.

MAINTENANCE, REPAIR AND MODIFICATION

The units do not need particular maintenance.

Warning

When opening the units, or when removing covers or components, live parts and terminals may be exposed.

Before starting this work, the unit must be disconnected completely.

After completing this work, re-shut the unit and re-fit all covers and components. Check if specifications on the type label must be changed and correct them, if necessary.

Caution

When opening the units, components which are sensitive to electrostatic discharge (ESD) can be exposed. The following work may be done only at workstations with suitable ESD protection.

Modification, maintenance and repair work may be done only by trained and authorized personnel. For this purpose, the West service should be contacted.

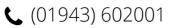
The cleaning of the front of the controller should be done with a dry or a wetted (spirit, water) kerchief.

11.1 Resetting to factory setting

In case of faulty configuration, 8800 process controller can be reset to the default condition.

For this, keep the following two keys pressed during power-on:

Controller reset to default is signalled by displaying FRILLOFY shortly in the display. Subsequently, the controller returns to normal operation.



12 Notes

Index	Digital inputs di1, di2, di3 Configuration
0-9	Technical data 78
2-point correction 67	E
\mathbf{A}	Environmental conditions 81
Alarm handling 28 - 29	Equipment
В	F
Bargraph	Front view
Bus interface	
Technical Data 81	I
C	Input INP1
Calibration level (LRL) 67 - 69	Configuration 33
Certifications	Parameters 64
Configuration examples	Technical data 78
2-point controller 55	Input INP2
3-point controller	Configuration
3-point stepping controller 57	Parameters 64
Continuous controller 58	Technical data 78
D - Y -Off controller 59	Input INP3
Measured value output 60	Configuration
Signaller 54	Parameters
Configuration level	Technical data
Configuration parameters 32 - 49	Input scaling 66
Parameter survey 31	L
Connecting diagram	LED
Connecting examples	Ada - LED 12
di2/3, 2-wire transmitter supply . 9	Err - LED 12
INP2 current transformer 8	func - LED
OUT1/2 heating/cooling 8	✓ - LED 12
OUT3 as logic output 11	LED colours 12
OUT3 transmitter supply 10	₹ - LED 12
RS485 interface 10	para - LED 12
Control inputs di1, di2, di3	SP.2 - LED
Technical data 78 Cooling functions	SP.E - LED
Constant period 53	Linearisierung
Standard 51	M
Water cooling non-linear 52	Mainenance manager 15 - 17
Current signal measuring range 78	Manual tuning
continuous mensorma range	Modbus master
	Mounting 6
D	N
DAC 70 - 71	Notes

0	V
O2-Messung 72	Versions
Offset correction 67	Voltage signal measuring range
Optimierung am Sollwert 20	
Output OUT1	
Configuration 39	
Technical data 79	
Output OUT2	
Configuration 40	
Technical data 79	
Output OUT3	
Configuration 41	
Technical data 79	
Output OUT4	
Configuration 42	
Technical data 79	
Output OUT5	
Configuration	
Technical data 80	
Output OUT6	
Configuration	
Technical data 80	
P	
Parameter setting level	
Parameter survey 62	
Parameters 63 - 65	
Parameter Sollwertgradient 64	
D	
R	
Resetting to factory setting 85	
Resistance thermometer measuring range	
S	
Safety hints 84 - 85	
Safety switch 6	
Safety test	
Sauerstoffmessung	
Self-tuning	
Cancelation	
Cancelation causes 24	
Set-point processing 50	
T	

Thermocouple measuring range 78

77 78