USER MANUAL

This document is property of SENECA srl. Duplication and reproduction of its are forbidden (though partial), if not authorized. Contents of present documentation refers to products and technologies described in it. Though we strive for reach perfection continually, all technical data contained in this document may be modified or added due to technical and commercial needs; it's impossible eliminate mismatches and discordances completely. Contents of present documentation is anyhow subjected to periodical revision. If you have any questions don't hesitate to contact our structure or to write us to e-mail addresses as above mentioned.

Seneca Z-PC Line module: Z204

The Z204 module measures the alternate and/or continue input voltage value and converts it to a current $(0 . .20 \mathrm{~mA})$ or voltage $(0 . .10 \mathrm{~V})$ programmable output signal, proportional to the RMS (Root Mean Square) input value.

General characteristics

> Input voltage up to 1200 V (DC scale) and 850 V RMS (AC scale), which scale can be selected by Dipswitches and the configuration have to be downloaded on the Z204 by software (Easy, ZNET).
$>$ If the screw terminals mode is selected «analog output», output can be turned between: current ($0 . .20 \mathrm{~mA}$, programmable) or voltage ($0 . .10 \mathrm{~V}$, programmable).
$>$ High precision: input class is 0.5 , outputs class is 0.1 .
> Input frequency range: DC.. $30 \mathrm{~Hz}-300 \mathrm{~Hz}$.
> 4000 V galvanic isolation between voltage input and the other terminals.
$>1500 \mathrm{~V}$ isolation between the output terminals and the power supply terminals.
> Power ON, fail, RS485 Tx, RS485 Rx: indications by the LED panel

Features

Power supply	10.. 40 VDC (free polarity) or 19.. 28 VAC $50 . .60 \mathrm{~Hz}$. Insulation toward the output terminals: 1500 V . Insulation toward the input: 4000 V
Consumption	$<1 \mathrm{~W}$ at 24Vdc.
Voltage input	Continue voltage $0 . .1200 \mathrm{Vdc}$; alternate voltage $0 . .850$ Vac Input impedance: 800 kohm. Frequency: DC. $30 \mathrm{~Hz}-300 \mathrm{~Hz}$. Precision class: 0.5 .
Passband	At 1 kHz , error is 1.5%
Current output	Range: $0 . .20 \mathrm{~mA}$ can be selected via DIP-switch. Maximum load resistance: 500 ohm. Precision class: 0.1
Voltage output	Range: $0 . .10 \mathrm{~V}$ can be selected via DIP-switch. Minimum load resistance: 1 kohm. Precision class: 0.1
Thermal stability	$100 \mathrm{ppm} / \mathrm{K}$.
Response time	For a stepped variation: 1 s from 10 to 90%.
Operating temperature	Operating temperature: $-20 . .65^{\circ} \mathrm{C}$, storage temperature: $-20 . .85$ ${ }^{\circ} \mathrm{C}$ humidity $30 . .90 \%$ at $40^{\circ} \mathrm{C}$ non-condensing.
LED signals	Power ON (green), fail (yellow), Rx/Tx (red).
Protection	IP20.
Weight, dimensions	$140 \mathrm{~g}, 100 \times 112 \times 17.5 \mathrm{~mm}$.
Overvoltage class	II, up to 600 Vrms; I, up to 1000 Vrms. For higher voltage / class values, an overvoltage limitation (external to the device) is necessary.

Conform to CE	
standards	EN61000-6-4 (2007) (electromagnetic emission, industrial
	environment)
	EN61000-6-2 (2006) (electromagnetic immunity, industrial
environment)	
	EN61010-1 (safety) All the circuits must be provided with double isolation against circuits under dangerous voltage. The power supply transformer must comply with EN60742 standards for isolation transformers and safety transformers.

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

Connections

Connect the pole «+» of voltage input, indifferently, to one of the screw terminals $7,8,9$ (equipotentials).

Connect the pole «-» of voltage input, indifferently, to one of the screw terminals 10, 11, 12 (equipotentials).

Dip-switches table

In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

The Z204 module is factory configured with 1000 Vdc full scale.
To change the input start scale / stop scale, set the Dip-Switch SW1 as shown in the previous table and configure the Z204 module using the software (Easy, Z-NET).

To obtain the best resolution, configure the Dip-Switch SW1 selecting the lower input scale (between the four scales in the previous table) including the new stop scale. Example: if the software-configured new full scale is 680 Vdc, set the Dip-Switch SW1-1=»0», SW1-2=»1» (corresponding to 0-850 Vdc).

RS 485 register table

Name	Range	Interpretation of register	R/W	Default	Address
MachinelD	1	Word	R		40001
	Id_Code (Module ID)			0x4900	
FWREV	/	Word	R		40002
	Firmware Code				
Baudrate	1	Word	R/W		40003
	Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{aligned} & 0=4800 ; 1=9600 ; 2=19200 ; 3=38400 ; 4=57600 ; 5=115200 ; \\ & 6=1200 ; 7=2400 \end{aligned}$			38400	
Scale and outset		Word	RW		40004
	Input scale setting is bit[1,0]: $0=D C$ scale is $0-150 \mathrm{Vdc}$, AC scale is $0-100 \mathrm{Vac}$ $1=D C$ scale is $0-500 \mathrm{Vdc}$, AC scale is $0-350 \mathrm{Vac}$ $2=D C$ scale is $0-850 \mathrm{Vdc}$, AC scale is $0-600 \mathrm{Vac}$ $3=D C$ scale is $0-1200 \mathrm{Vdc}$, AC scale is $0-850 \mathrm{Vac}$ Output signal type is bit[2]: $0=$ output is current; $1=$ output is voltage			$\begin{aligned} & \text { Bit }[1,0]=3 \\ & \text { Bit } 2=0 \end{aligned}$	
Delay		Word	R/W		40005
	Delay for RS485 (delay of communication response): from $0 \times 0000=0$ (no delay) to $0 x F F F F=65535$			0	
Address and Parity	Address: from $0 \times 01=1$ to $0 x F F=255$	MSB, LSB	R/W		40006
	Address for RS485 (address of module/node if parameters are configurated by memory modality)			1	Bit [15:8]
	Parity for RS485: 0=there isn't; 1=odd; 2=even			0	Bit [7:0]
Input start		Word	R/W		40007
	Input start scale (in V/10)			0	
Input stop		Word	R/W		40008
	Input stop scale (in V/10)			$\begin{aligned} & 10000 \\ & (=1000 \mathrm{~V}) \end{aligned}$	
Out start scale (if current)		Word	R/W		40009
	Output start scale, for current (in uA)			4000	
Out stop scale (if current)		Word	R/W		40010
	Output stop scale, for current (in uA)			20000	

Out start scale (if voltage)		Word	R/W		40011
	Output start scale, for voltage (in mV)			0	
Out stop scale (if voltage)		Word	R/W		40012
	Output stop scale, for voltage (in mV)			10000	
Status		Bit	R		40045
	Error status register, bit[0]=1: flash setting error; bit[1]=1: flash tarature error				
V RMS		Word	R		40046
	Input voltage RMS value, in V/10 (example: 10000=1000 VRMS)				
V RMS float		Floating point	R		$\begin{aligned} & \text { 40047(MSB) } \\ & 40048(\mathrm{LSB}) \end{aligned}$
	Input voltage VRMS value				
Command		Word	R/W		40050
	To reset, write 0xC1A0 (49568 decimal) in this register				

LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

LED	LED status	Meaning		
PWR	ON	The module is power on		
ERR	ON	Internal error		
RX	ON	Data are being received through the RS485 communication port		
TX	ON	Data are being transmitted through the RS485 communication port		

Easy-SETUP

To configure the Seneca Z-PC Line modules, it is possible to use Easy-SETUP software, Freedownloadable from the www.seneca.it.

