User Guide
|M/C160_8

Wall-/Pipe-mounted Universal
Process Indicator

Electrical Safety

This equipment complies with the requirements of CEI/IEC 61010-1:2001-2 "Safety requirements for electrical equipment for measurement, control, and laboratory use". If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

Symbols

One or more of the following symbols may appear on the equipment labelling:

1	Warning - Refer to the manual for instructions
$\frac{1}{\square}$	Caution - Risk of electric shock
$\frac{1}{-}$	Erotective earth (ground) terminal

$=$	Direct current supply only
	Alternating current supply only
	Both direct and alternating current supply
\square	The equipment is protected through double insulation

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Communications Department.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.

The COMMANDER 160 is a development of the COMMANDER 150 1⁄8 DIN indicator and uses the same programming procedures. It also compliments the COMMANDER 310 universal controller giving an IP66 indicator in the same case, providing a retransmission output and three alarm relays, with the option to add MODBUS ${ }^{\text {TM }}$ RS485 communications.

This manual is divided into 5 sections which contain all the information needed to install, configure, commission and operate the COMMANDER 160. Each section is identified clearly by a symbol as shown below.

Displays and Controls

- Displays and function keys
- LED Indication
- Error Messages

Operator Mode (Level 1)

- Operator menus for:
- Standard Indicator
- Totalizer/Batch Controller
- Maximum/Minimum/Average Indicator

Set Up Mode (Level 2)

- Alarm trip points
- Totalizer functions

Configuration Mode (Levels 3 and 4)

- Accessing the configuration levels
- Level 3
- Hardware assignment and input type
- Alarm types and hysteresis
- Operator functions and totalizer setup
- Digital input and serial communications
- Level 4
- Ranges and passwords

Installation

- Siting
- Mounting
- Electrical connections

Symbol Identification and Section Contents
Section Page
GETTING STARTED 1
1 DISPLAYS AND FUNCTION KEYS 3
1.1 Introduction 3
1.2 Use of Function Keys 4
1.3 LED Alarms and Indicators 5
1.4 Error Messages 6
2 OPERATOR MODE 7
2.1 Introduction 7
2.2 Operating Page - Standard 8
2.3 Operating Page - Totalizer 9
2.4 Operating Page - Math Functions 11
3 SET UP MODE 13
3.1 Introduction 13
3.2 Set Up Level 14
4 CONFIGURATION MODE 18
4.1 Introduction 18
4.2 Accessing the Configuration Mode 18
4.3 Basic Configuration 20
4.3.1 Hardware Assignment and Input Type 20
4.3.2 Alarms 22
4.3.3 Operator Functions and Totalizer Set Up 26
4.3.4 Digital Input and Serial Communications 28
4.4 Ranges and Passwords 30
5 INSTALLATION 33
5.1 Siting 33
5.2 Mounting 35
5.3 Cable Glands and Conduit Fixings 37
5.3.1 Cable Glands (IEC - 20mm) 37
5.3.2 Conduit Adapters (N. American - 0.5 in.) 37
5.3.3 Cable Glands (N. American - 0.5 in .) 38
5.4 Electrical Connections 39
6 SPECIFICATION 41

Information.

The fold-out page inside on the back cover of this manual shows all the frames in the programming levels. Space is provided on the page for writing the programmed setting or selection for each frame.

1.1 Introduction - Fig. 1.1

The COMMANDER 160 front panel display, function keys and LED indicators are shown in Fig. 1.1.

Function Keys

Parameter Advance

Raise

Lower

Multi-function Key
Fig. 1.1 Front Panel Display, Function Keys and Indicators

1.2 Use of Function Keys - Fig. 1.2

A - Raise and Lower Keys

Use to change/set a parameter value...

...move between levels
B - Parameter Advance Key

Note. This key also stores any changes made in the previous frame

C - Multi-function Key

Use to view a parameter setting or selection...
or...

...select individual characters in a frame

Fig. 1.2 Use of Function Keys

1.3 LED Alarms and Indicators

LED Status

All Flashing

- Indicator is in the configuration mode - see Section 4.2.

A1, A2 and A3

- Flashes when Alarm is active (off when inactive).
- Lit constantly when Alarm 1 is an active latched alarm which has been acknowledged

Fig. 1.3 LED Alarms and Indicators

．．． 1 DISPLAYS AND FUNCTION KEYS

1．4 Error Messages

Display	Error／Action	To Clear Display
ERLER	Calibration error Turn mains power off and on again （if the error persists contact the Service Organization）．	Press the $\boldsymbol{\Delta}$ key
EFEETr	Configuration error The configuration and／or setup data for the instrument is corrupted．Turn mains power off and on again（if error persists， check configuration／setup settings）．	Press the $\boldsymbol{\square}$ key
日ヵErr	A to D Converter fault The analog to digital converter is not communicating correctly．	Turn mains power off and on again．If the error persists，contact the Service Organization
$\begin{array}{r} 1,19 \\ -9,9994 \end{array}$	Process variable over／under range	Restore valid input
Пロ！Er－	Option board error Communications to the option board have failed．	Contact the Service Organization

2 OPERATOR MODE

2.1 Introduction

Operator Mode (Level 1) is the normal day-to-day mode of the COMMANDER 160.
Frames displayed in level 1 are determined by the indicator functions which are selected during configuration of the instrument - see Section 4.

Note. Only the operating frames relevant to the configured functions are displayed in Operator Mode.

The three indicator functions are:

- Standard Indicator - page 8
- Indicator with Totalization \quad - page 9
- Indicator with Max./Min./Average - page 11

2.2 Operating Page - Standard (Level 1)

-1 Displayed only if there is an active latch alarm.

2 OPERATOR MODE...

2.3 Operating Page - Totalizer (Level 1)

These frames are displayed only if the totalizer function is enabled in the configuration level - see Section 4.3.3

To reset the totalizer, select $r 5 t-S$ then press the * key.

Continued on next page.
-1 Totalizer stop/go and reset from these frames can be disabled - see Section 4.3.3.

A digital input can also be used to start/stop or reset the totalizer - see Section 4.3.4

...2.3 Operating Page - Totalizer (Level 1)

-1 The predetermined value should be greater than the preset value when the totalizer is counting up and lower than the preset value when the totalizer is counting down.
-2 Displayed only if enabled in the configuration level - see Section 4.3.3.

2.4 Operating Page - Math Functions (Level 1)

Note. It is possible to display totalizer and math functions together.

-1 This frame can be disabled - see Section 4.3.3.
The reset function in this frame can be disabled - see Section 4.3.3.
The average value is reset automatically on power-up and can also be reset from a digital input - see Section 4.3.4.

...2.4 Operating Page - Math Functions (Level 1)

To reset the maximum value, select $r S t-S$ then press the * key.

Minimum Value

This is the minimum value of the process variable since the minimum was reset.

To reset the minimum value, select r St-S then press the ${ }^{*}$ key.

-1 This frame can be disabled - see Section 4.3.3.
The reset reset function in this frame can be disabled - see Section 4.3.3.
The average value is reset automatically on power-up and can also be reset from a digital input - see Section 4.3.4.

3 SET UP MODE

3.1 Introduction

To access the Set Up Level (Level 2) the correct set up or configuration level password must be entered in the security password frame ($[$ odE) in Level 1 - see Sections 2.2 to 2.4.

Fig. 3.1 Accessing the Setup Level (Level 2)

3.2 Set Up Level (Level 2)

-1 Not displayed if the alarm is disabled ('None' selected) - see Section 4.3.2.
-2 Displayed only if custom alarm hysteresis is selected - see Section 4.3.2 Not displayed if 'Rate' Alarm type is selected.

...3.2 Setup Level (Level 2)

To reset the maximum value, select $r 5 t-5$ then press the * key.

Setting to $t-60$ starts the totalizer counting towards the predetermined value. Setting to $t-5 t 0 P$ holds the totalizer at its present value.

SEC.LDE

Continued on next page
-1 Not displayed if the alarm is disabled ('NONE' selected) - see Section 4.3.2
-2 Displayed only if custom alarm hysteresis is selected - see Section 4.3.2 Not displayed if 'Rate' Alarm type is selected.
-3 Displayed only if enabled in the Configuration Level - see Section 4.3.3
-4 A digital input can also be used to reset the batch total.

...3.2 Set Up Level (Level 2)

Secure Total

The secure total is independent of the batch total value. When 999999 or 000000 is reached, the total is reset and then continues counting.

456789 - Total

Reset

$$
\begin{aligned}
& \text {-5L-n } \Delta \text { rst-y - reset totalizer } \\
& \square \text { - } \sqrt{\square} \text {-n - do not reset totalizer }
\end{aligned}
$$

To reset, select $r \boldsymbol{S t - S}$ then press the ${ }^{*}$ key.

$$
\text { 999999 } \frac{\Delta}{\nabla} \text { [000000 to 999999] }
$$

Continued on next page.
-1 Displayed only if enabled in the Configuration Level - see Section 4.3.3.
-2 The preset value must be lower than the predetermined value when counting up, and greater than the predetermined value when counting down.

...3.2 Set Up Level (Level 2)

Average Value
This is the mean average value of the process
variable input since the average was reset.
-1 The average value is reset automatically on power-up and can also be reset from a digital input - see Section 4.3.4.
-2 The maximum and minimum values are reset automatically on power-up and can also be reset from a digital input - see Section 4.3.4.

4.1 Introduction

The Configuration Mode comprises two levels (3 and 4) as shown in Fig. 4.2.
Configuration level 3 is divided into four frames. For most simple applications it is only necessary to set up the parameters in the first frame.

Note.

When in the configuration level:

- All the I.e.d. indicators flash.
- All relays and logic outputs are turned off.
- The analog output reverts to $0 \%(4 \mathrm{~mA})$ output level.

4.2 Accessing the Configuration Mode - Fig. 4.1

The Configuration Mode is accessed by entering the correct password in level 1 (see Sections 2.2 to 2.4). The configuration password is set up in level 4.

Fig. 4.1 Accessing the Configuration Level (Levels 3 and 4)

Level 3 LEUEL3	LEUELY EnG HI	Level 4 Engineering Range High
	$\begin{aligned} & \hline E \cap G \quad \angle O \\ & \hline-E E \quad H \quad \\ & \hline \end{aligned}$	Engineering Range Low Retransmission Range High
$\begin{gathered} \text { Alarms and } \\ \text { Set Points } \\ \hline \end{gathered}$	$\begin{aligned} & \text { FEL LO } \\ & \text { Ent HI } \end{aligned}$	Retransmission Range Low Totalizer Count High
$\begin{array}{ll} \text { Custom Operator } \\ \text { Settings } \\ \hline & 100000 \\ \hline \end{array}$	$\begin{aligned} & \text { CULOFF } \\ & 5-P R 55 \\ & \hline \end{aligned}$	Totalizer Count Cut-off Set Up Level Password
	C-PR5S Rodr.	Configuration Level Password MODBUS ${ }^{\text {TM }}$ Address
Fig. 4.2 Configuration Levels		

4.3 Basic Configuration (Level 3) - Fig. 4.3

4.3.1 Hardware Assignment and Input Type

Level 3

Note. To select this frame from anywhere in this level, press and hold the \square key for a few seconds.

'RbCd' Settings

The first character ($\boldsymbol{R}, b,[$ or d) identifies the parameter to be changed. The current setting is indicated by a flashing letter. Parameter options are shown in Fig. 4.3.
$8=$ Hardware configuration
$b=$ Input type and range
[= Temperature units
$d=$ No. of decimal points
Note. For custom settings contact the local distributor.

Continued on page 22.

Information.

Count High Calculation

Convert flow rate into units $/ \mathrm{sec}=\frac{\text { actual engineering flow rate }}{\text { flow range time units (in seconds) }}$ Count High $=\frac{\text { units } / \mathrm{sec}}{\text { counter factor }}$ resultant must be >0.001 and <99.999 pps.

Counter factor is the engineering value of the least significant digit shown on the totalizer display - see Section 4.3.3.

Totalizer Count Pulse

The totalizer count pulse is on for a preset time of 250 ms and off for a minimum of 250 ms .

$8 \quad 1 \quad[0$
 A - Hardware Configuration

Supply Hz		Relay 1 Source	Relay 2 Source	Relay 3* Source	Logic O/P Source	Analog O/P Source
50	60					
1	8	Alarm 1	Alarm 2	Alarm 3	TCP**	PV
2	b	Alarm 1	Alarm 2	Alarm 3	TWP**	PV
3	¢	TCP**	Alarm 1	Alarm 2	TWP**	PV
4	0.	TWP**	Alarm 1	Alarm 2	TCP**	PV
5	ε	Alarm 1	Alarm 2	Alarm 3	TCP**	PV Average
4		Custom	Custom	Custom	Custom	Custom

TCP = Totalizer Count Pulse TWP = Totalizer Wrap Pulse PV = Process Variable

* Not available if MODBUS ${ }^{T M}$ option fitted.
** Pulse energizes assigned relay

Display		Display	
b	THC Type B	1	0 to 20 mA
ε	THC Type E	2	4 to 20 mA
J	THC Type J	3	0 to 5 V
μ	THC Type K	4	1 to 5 V
n	THC Type N	6	0 to 50 mV
r	THC Type R	7	4 to 20 mA (square root linearizer)
5	THC Type S	U	Custom Configuration
t	THC Type T		
ρ	PT100 RTD		

Display	Temperature Units
ζ	Degrees C ${ }^{\star}$
F	Degrees F
0	No temperature units

* Temperature inputs only

D - Process Variable Display Decimal Places

Display	
0	xxxx
1	$\mathrm{xxx} . \mathrm{x}$
2	$\mathrm{xx} . \mathrm{xx}$
3	$\mathrm{x} . \mathrm{xxx}$
4	$\mathrm{x} . \mathrm{xxxx}$

Fig. 4.3 Hardware Configuration and Input/Output Ranges

4.3.2 Alarms - Figs. 4.4, 4.5 and 4.6

Note. All relays are de-energized in the alarm state.

'EFEH'Settings

The first character (E, F, \bar{G} or H) identifies the parameter to be changed. The current setting is indicated by a flashing letter. Parameter options are shown in Fig. 4.4.

$$
\begin{aligned}
E & =\text { Alarm } 1 \text { type } \\
F & =\text { Alarm } 2 \text { type } \\
G & =\text { Alarm } 3 \text { type } \\
H & =\text { Alarm hysteresis }
\end{aligned}
$$

Note. For custom settings contact the local distributor.

Continued on page 26.

E OOOD E Alarm 1 Type

Display	
0	None
1	High Process
?	Low Process
3	High Latch
4	Low Latch
5	Fast Rate
5	Slow Rate

Display	
0	None
1	High Process
2	Low Process
3	High Latch
4	Low Latch
5	Fast Rate
5	Slow Rate

Display	
0	None
1	High Process
2	Low Process
3	High Latch
4	Low Latch
5	Fast Rate
6	Slow Rate

h 0000

H - Alarm Hysteresis

Display	
0	None
1	0.1%
2	0.2%
3	0.5%
4	1.0%
5	2.0%
6	5.0%
U	Custom

Note. When custom alarm hysteresis is selected, the alarm hysteresis values are set individually in the Set Up Level - see Section 3.2.

Fig. 4.4 Alarm Setup

...4.3.2 Alarms - Figs. 4.4, 4.5 and 4.6

Information.

For latch alarms the relay remains de-energized until acknowledged in Level 1 (or by a digital input).

Fig. 4.5 Process Alarm Action
\% Engineering Range

Information. The example above shows a fast rate alarm with a trip value of 10% of the Engineering Span per hour on an engineering range of 0.0 to 100.0. The time taken to detect whether an alarm condition is present or has cleared is calculated as follows:

$$
\begin{aligned}
& t=10.81+\frac{1800}{\text { trip value(10\% eng span per hour) }} \\
& t=191 \text { seconds }
\end{aligned}
$$

Fig. 4.6 Rate Alarm Action

4.3.3 Operator Functions and Totalizer Set Up - Fig. 4.7

'JHin' Settings
The first character (J, μ., L or n) identifies the parameter to be changed. The current setting is indicated by a flashing letter. Parameter options are shown in Fig. 4.7.

」 = Totalizer set-up
$\mu=$ No. of decimal places for totalizer
$L=$ Operator level frame enable
$n=$ Operator level functions enable/disable
Note. For custom settings contact the local distributor.

Continued on page 28.

$\int^{J} 00000$ - Totalizer Setup

K - Totalizer Display Decimal Places

Display	
0	Off
i	Count Up, Wrap Off
2	Count Up, Wrap On
3	Count Down, Wrap Off
4	Count Down, Wrap On

Display	
0	xxxxxx
1	xxxxx.x
2	xxxx.xx
3	xxx.xxx
4	xx.xxxx
5	x.xxxxx

10000

L - Operator Level Frame Enable

Display	Max/Min Values Displayed	Average Value Displayed	Preset/Predetermined Values Displayed
0	No	No	No
1	Yes	No	No
2	Yes	Yes	No
3	No	Yes	Yes
4	No	No	Yes
5	Yes	No	Yes
5	Yes	Yes	Yes

This frame determines which frames appear in the operating page (level 1)
$\because 0000$
N - Operator Level Math Function \& Totalizer Control Enable

Display	Totalizer Stop/Go	Totalizer Reset	Max./Min./Average
0	No	No	No
i	Yes	No	No
2	No	Yes	No
3	Yes	No	Yes
4	No	Yes	Yes
5	Yes	Yes	Yes

This frame determines which functions the operator can control
Fig. 4.7 Totalizer Setup and Operator Functions

4.3.4 Digital Input and Serial Communications - Figs. 4.8 and 4.9

'Prst'Settings

The first character ($P, r, 5$ or t) identifies the parameter to be changed and the current setting is indicated by a flashing letter. Parameter options are shown in Fig. 4.9.
$P=$ Digital input function
$r=$ Analog input filter
$S=$ Serial communications configuration
$t=$ Serial communications parity
Note. For custom settings contact the local distributor.

Continued on page 30.

1 Totalizer Reset

2 Totalizer Stop/Go

Max

3 Average Max/Min Reset

Information.

Digital input options 1, 2, 3 and 5 are edge-triggered to enable the front panel keys to change the function when the digital input is operational.

Fig. 4.8 Digital Function Configuration

| $P \quad 0000$ | P Digital Input Function |
| :--- | :--- | :--- |

Display	
0	None
i	Totalizer Reset
2	Totalizer Stop/Go
3	Average, Max/Min Reset
4	Front Panel Lockout
5	Alarm Acknowledge

$r 000 \square$ R - Analog Input Filter

Display	
0	0 seconds
i	1 second
2	2 seconds
5	5 seconds
B	10 seconds
b	20 seconds
C	40 seconds
0.	60 seconds

S - Serial Communication Configuration

Display	Baud Rate, 2/4 Wire
0	Off
i	2400,2 -Wire
2	2400,4 -Wire
3	9600, -Wire
4	$9600,4-W i r e$

Display	
0	None
i	Odd
2	Even

Note. Settings for options P, S and T are only available if the appropriate option board is fitted.

Fig. 4.9 Digital Function and Serial Communications Configuration

4.4 Ranges and Passwords (Level 4)

Continued on next page...
-1 The engineering range high and low values are automatically set to the maximum allowed value when thermocouple or RTD is selected in the Configuration Level - see Section 4.3.1. This value can be modified if required.

...4.4 Ranges and Passwords (Level 4)

-1 The retransmission range high and low values are automatically set to the maximum allowed value when thermocouple or RTD is selected in the configuration level - see Section 4.3.1. This value can be modified if required.

...4.4 Ranges and Passwords (Level 4)

-1 Displayed only if enabled in the configuration level - see Section 4.3.3.
-2 Available only if the appropriate option board is fitted.

5 INSTALLATION

EC Directive 89/336/EEC

In order to meet the requirements of the EC Directive 89/336/EEC for EMC regulations, this product must not be used in a non-industrial environment.

5.1 Siting - Figs 5.1 and 5.2

Avoid Vibration

Fig 5.1 Siting - General Requirements

...5.1 Siting - Figs 5.1 and 5.2

Temperature Limits

Humidity Limits

0 to 90% RH

Use Screened Cable

Note. If it is not possible to avoid strong electrical and magnetic fields, screened cables within earthed metal conduit must be used.

Fig 5.2 Environmental Requirements

5.2 Mounting - Figs. 5.3 and 5.4

The instrument is designed for wall-mounting or pipe-mounting (see Fig. 5.4). The pipe-mounting kit (part no. 4600/0138) is suitable for both vertical and horizontal pipes. Overall dimensions are shown in Fig. 5.3.

...5.2 Mounting - Figs. 5.3 and 5.4

(2) Drill suitable holes

Wall-mounting

(3) Fix instrument to wall using suitable fixings
(1) Mark fixing centers (see Fig. 5.3)

Fig. 5.4 Mounting Details

5.3 Cable Glands and Conduit Fixings

...5.3.2 Conduit Adapters

(N. American - 0.5 in.) - Fig. 5.6

Information.

- Suitable adapters for indicator (mandatory for FM installations):

APPLETON
ST-50 PLUS STG-50 or STB-50 PLUS STG-50.

Reusable ONLY with replacement ferrule STF-50.
O.Z. GEDNEY 4Q-50, 4Q50T or 4Q-50TG.

Fig. 5.5 Cable Gland (Supplied as Standard)

5.3.2 Conduit Adapters

(N. American - 0.5 in.) - Fig. 5.6

Warning.

- Rigid conduit must NOT be fitted to the Indicator.
- Indicator adapters must incorporate a face seal.
- Torque settings for the hubs and outer nuts on the specified adaptors is 20ft.lbs minimum, 25 ft .lbs. maximum.

5.3.3 Cable Glands (N. American - 0.5 in.) - Fig. 5.7

Warning.

- Indicator glands must be fitted with a face seal.
- Torque settings (hubs only) -20 ft . lbs minimum, 25 ft . lbs. maximum.
- Outer nuts - hand tight plus a half turn only.

Information.

- Suitable Cable Glands: (mandatory for FM installations):
O.Z. GEDNEY SR-50-375 or SR-504

APPLETON CG 3150 or CG-3150S (and STG-50 sealing ring).
THOMAS \& BETTS 2521.

- When fitting cable glands to the Indicator, start with an outer gland and also temporarily fit a gland at the opposite end, to aid location of the transmitter gland plate. Fit and tighten glands consecutively from initial gland.

Fig. 5.7 Cable Glands

5.4 Electrical Connections - Fig. 5.8

Warning. Before making any connections, ensure that the instrument power supply, any powered control circuits and high common mode voltages are switched off.

Note. The analog output and the logic output share a common positive and can be used at the same time.

5.4.1 Relay Contact Ratings

Relay contacts are rated at:
$115 / 230 \mathrm{~V}$ a.c. at 5 A (non-inductive)
250V d.c. 25W max.

5.4.2 Arc Suppression

Arc suppression components are fitted to relays 2 and 3 only. If relay 1 is required to switch inductive loads, the arc suppression components supplied must be fitted.

5.4.3 Logic Output

18 V d.c. at 20 mA
Min. load 900Ω
Isolation 500 V from input (not isolated from retransmission output)

5.4.4 Retransmission Analog Output

Max. load 15V (750Ω at 20 mA)
Isolation 500V from input (not isolated from logic output)
Note. Problems may be encountered if the retransmission analog output is connected to devices with a very fast sampling rate. A $100 \mu \mathrm{~F} 63 \mathrm{~V}$ electrolytic capacitor can be fitted across terminals 8 (+ve) and 20 (-ve).

5.4.5 Digital Input

Type: Volt-free
Minimum pulse: 250 ms

Relay 3

$\underbrace{\mathrm{L}}$
85 to 265 V AC Mains Supply

24V DC Supply

 T

* Fit 100Ω resistor supplied
** Fit arc suppression components

Fig. 5.8 Electrical Connections

6 SPECIFICATION

Summary

Fully user-configurable universal indicator
IP66/NEMA4X all-round protection
Large 5-digit display
Totalizer/math functions as standard

Operation

Display

High-intensity 7 -segment, 1×6-digit LED display
Three alarm LED indicators

Display range	process value totalization	-9999 to +99999
	0 to 999999	
Display resolution		± 1 digit
Display height		$14 \mathrm{~mm}(0.56 \mathrm{in})$.

Configuration

User-defined via front panel or PC configurator

Standard Functions

Totalizer

Six-digit, batch and secure totals

Alarms	
Number	Three user-defined
Types	High/Low process
	High/Low latch
	Fast/Slow rate

Maths function

Maximum and minimum value detection
Average value calculation

Analog Input

Input sampling rate

250 ms
Type
Universally configurable to provide:
Thermocouple (THC)
Resistance Thermometer (RTD)
Millivolt
Current
DC Voltage
Input impedance
mA 1001
$\mathrm{mV}, \mathrm{V} \quad>10 \mathrm{Ml}$

Linearizer functions

Programmable for:
Square root, THC types B, E, J, K, N, R, S, T or Pt100
Custom 20-breakpoint linearizer, set up by PC configurator

Broken sensor protection

Upscale drive on thermocouple and RTD
Downscale drive on milliamps and voltage

Cold junction compensation

Automatic CJC incorporated as standard
Stability $\quad<0.05^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$ change in ambient temperature
Input protection

Common mode isolation	$>120 \mathrm{~dB}$ at $50 / 60 \mathrm{~Hz}$ with 3001
imbalance resistance	
Series mode rejection	$>60 \mathrm{~dB}$ at $50 / 60 \mathrm{~Hz}$

Transmitter power supply

$24 \mathrm{~V}, 30 \mathrm{~mA}$ max. to power one 2-wire transmitter

Inputs/Outputs

Retransmission

Analog, configurable in the range of 4 to 20 mA

Max. load	$15 \mathrm{~V}(7501$ at 20 mA$)$
Accuracy) 0.25% of span
Isolation	500 V DC from input
	(not isolated from logic output)
Assignable to Process Variable or Average PV	

Assignable to Process Variable or Average PV
Logic output

Rating
Min. load
Isolation

Relay output
Number
Rating
Function
wrap
Digital input
Type Volt-free

Minimum pulse 250 ms

Options

Modbus serial communications

Connections	RS422/RS 485,2 or 4 -wire
Speed	2.4 k or 9.6 k baud rate
Protocol	Modbus RTU slave

. 6 SPECIFICATION

Physical

Size
160 mm (6.3 in.) wide $\times 250 \mathrm{~mm}$ (9.84 in.) high \times 68 mm (2.68 in.) deep

Weight

$$
2 \mathrm{~kg}(4.5 \mathrm{lb}) \text { approx. }
$$

Mounting Option

Wall-mounted
Pipe-mounted with optional kit Pt. No. 4600/0138

Electrical

Voltage

85 to 265 V AC $50 / 60 \mathrm{~Hz}$
24V DC (option)

Power consumption

<6 VA AC
$<5 W$ DC

Power interruption protection

$<60 \mathrm{~ms} /<3$ cycles, no effect
$>60 \mathrm{~ms} />3$ cycles, instrument returns to operation after a controlled reset

Environmental

Operating limits

-10 to $55^{\circ} \mathrm{C}\left(32\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
5 to 95% RH non-condensing

Temperature stability

$<0.02 \%$ of reading or $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\left(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{F}\right)$

Enclosure

IP66/NEMA4X

EMC

Emissions

Meets requirements of EN50081-2

Immunity

Meets requirements of EN50082-2
Design and manufacturing standards
CE mark
Electrical safety
EN61010-1

Standard Analog Input Ranges

Thermocouple	Maximum Range ${ }^{\circ} \mathrm{C}$	Maximum Range ${ }^{\circ} \mathrm{F}$	Accuracy (\% of reading)
B	-18 to 1800	0 to 3270	0.1% or $\pm 2^{\circ} \mathrm{C}\left(3.6^{\circ} \mathrm{F}\right)\left[\mathrm{above} 200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)\right]^{*}$
E	-100 to 900	-140 to 1650	0.1% or $\pm 0.5^{\circ} \mathrm{C}\left(0.9^{\circ} \mathrm{F}\right)$
J	-100 to 900	-140 to 1650	0.1% or $\pm 0.5^{\circ} \mathrm{C}\left(0.9^{\circ} \mathrm{F}\right)$
K	-100 to 1300	-140 to 2350	0.1% or $\pm 0.5^{\circ} \mathrm{C}\left(0.9^{\circ} \mathrm{F}\right)$
G	-200 to 1300	-325 to 2350	0.1% or $\pm 0.5^{\circ} \mathrm{C}\left(0.9^{\circ} \mathrm{F}\right)$
R	-18 to 1700	0 to 3000	0.1% or $\pm 1.0^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)\left[\mathrm{above} 300^{\circ} \mathrm{C}\left(572^{\circ} \mathrm{F}\right)\right]{ }^{*}$
S	-18 to 1700	0 to 3000	0.1% or $\pm 0.5^{\circ} \mathrm{C}\left(0.9^{\circ} \mathrm{F}\right)\left[a b o v e 200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)\right]{ }^{*}$
T	-250 to 300	-400 to 550	0.1% or $\pm 0.5^{\circ} \mathrm{C}\left(0.9^{\circ} \mathrm{F}\right)$

*For B, R and S thermocouples, performance accuracy is not guaranteed below value stated
$\begin{array}{lll}\text { Min. span below zero } & \text { Type T } 70^{\circ} \mathrm{C}\left(126^{\circ} \mathrm{F}\right) & \text { THC standards DIN } 43710 \\ & \text { Type N } 105^{\circ} \mathrm{C}\left(189^{\circ} \mathrm{F}\right) & \end{array}$

RTD	Maximum Range ${ }^{\circ} \mathrm{C}$	Maximum Range ${ }^{\circ} \mathrm{F}$	Accuracy $\left(\%\right.$ of reading) ${ }^{* *}$
Pt100	-200 to 600	-325 to 1100	0.1% or $\pm 0.5^{\circ} \mathrm{C}\left(0.9^{\circ} \mathrm{F}\right)$

* RTD, 3-wire platinym, 1001 per DIN 43760 standard (@EC 751), with range of 0 to 4001

Linear Inputs	Range	Accuracy (\% of reading)
Milliamps	0 to 20 mA	0.2% or $\pm 2 \mu \mathrm{~A}$
Milliamps	4 to 20 mA	0.2% or $\pm 2 \mu \mathrm{~A}$
Volts	0 to 5 V	0.2% or $\pm 200 \mu \mathrm{~V}$
Volts	1 to 5 V	0.2% or $\pm 200 \mu \mathrm{~V}$
Millivolts	0 to 50 mV	0.1% or $\pm 20 \mu \mathrm{~V}$

Square Root Input	Range	Accuracy (\% of reading) ${ }^{\star \star \star}$
Milliamps	4 to 20 mA	0.2% or $\pm 2 \mu \mathrm{~A}$

[^0]NOTES

CUSTOMER CONFIGURATION LOG

LEVEL
$8 i \times x$
$82 \times x$

$83 \times x$
$8 \times \times \times \times \times x$
6

$t-60$
SEC.tot
PrESE \qquad
PrEsEt
$8 \times x \times x$
$H_{x \times x x}$
$1 \times x \times x \times$
ORd 」

Instrument Serial Number:

Product Code: C 160 / \qquad _ 1 _ - -

Customer Support

We provide a comprehensive after sales service via a Worldwide Service Organization.
Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom

ABB Limited
Tel: +44 (0)1480 475321
Fax: +44 (0)1480 217948

United States of America

ABB Inc.
Tel: +1 2156746000
Fax: +1 2156747183

Client Warranty

Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company's published specification. Periodic checks must be made on the equipment's condition.

In the event of a failure under warranty, the following documentation must be provided as substantiation:

1. A listing evidencing process operation and alarm logs at time of failure.
2. Copies of all storage, installation, operating and maintenance records relating to the alleged faulty unit.

ABB has Sales \& Customer Support expertise in over 100 countries worldwide
www.abb.com

The Company's policy is one of continuous product improvement and the right is reserved to modify the information contained herein without notice.

Printed in UK (07.05)
© ABB 2005

ABB Limited

Howard Road, St. Neots
Cambridegshire
PE19 8EU
UK
Tel: +44 (0)1480 475321
Fax:+44 (0)1480 217948

ABB Inc.

125 E. County Line Road
Warminster
PA 18974
USA
Tel: +1 2156746000
Fax:+1 215-674 7183

[^0]: *** Below input of $4.64 \mathrm{~mA}(20 \%$ flow) the input is linear

