C50

1/16 DIN Controller/Alarm Unit

C50 - the 1/16 DIN controller to suit your simplest applications

High visibility dual 4-digit display

- shows set point and process variable

Standard relay or logic control output

simple time proportioning or on/off control

Optional alarm relay

- additional relay to give hi/lo process alarm

Universal process input

- direct connection for any process signal

IP65 (NEMA3) protection and full noise immunity

- reliability in the harshest environments

One-shot autotune

- automatic setting of optimum PID values

C50

The C50 Controller/Alarm unit is a compact single loop controller, with the capability to measure, indicate and control a variety of process variables.

The unit is ideal for simple PID control, offering On/Off or Time proportioning control with a one shot self-tune facility. The C50 can also act as an independent alarm unit, for example, as an over-temperature safety cutout unit for furnaces or ovens.

The unit is quickly set up for most process signal inputs and, with IP65 (NEMA3) front panel protection, is suitable for a wide range of applications.

PID Control

The unit's primary relay or logic output can provide a time proportioning PID output, for control of contactors.

Override Alarm

By configuring the relay output as an overrange alarm, the C50 can act as an independent alarm unit, providing protection for your process.

Ramping Set Point

To reduce shock to the process when changing set point, the C50 can be configured to ramp up to the new set point over a preset period of time.

Specification

Summary

PID single loop controller/alarm unit

Autotune Facility

Fully User Configurable

IP65 (NEMA3) Front Face

Operation

Display

High intensity, 7-segment, 2 x 4 red LED display

upper 10mm (0.39 in.) lower 8mm (0.31 in.)

Configuration

User defined via front panel and internal links.

Outputs

Primary output (fitted as standard)

Relay SPDT 2A 120/240V AC

Output functions

User configurable as either:

On/Off control output

Time proportioning PID control output

Physical

Size

48mm (1.89 in.) x 48mm (1.89 in.) x 110mm (4.33 in.) (depth behind panel)

<200g (0.44lbs.) approx.

Option

Second relay output, configurable for alarms, meets the specification of the standard relay output.

Electrical

Voltage:

90 to 264 V AC 50/60 Hz

Power consumption:

<4VA

EMC

Emissions and Immunity

Meets requirements of IEC 61326 for an Industrial Environment

Safety

General safety

Approved to cURus #208029

Analog Inputs

Single universal process input

Type

Universally Configurable for:

Thermocouple (THC)

Resistance Thermometer (RTD)

Linear Millivolt Linear Current Linear DC voltage

Input Sampling Rate

1 sample/250ms

Input impedance:

Millivolts/THC/RTD $>100M\Omega$ Volts >47KΩ $<4.7\Omega$ Current

Linearizer functions

Automatic linearisation of THC types B, J, K, R, S, T, L, N and RTD Pt100

Broken Sensor protection

For the following options, break detected within two seconds and control outputs DOWN scale to OFF (0% power):

THC, RTD, DC mV, DC Volts (1 to 5V and 2 to 10V), DC mA (4 to 20mA).

Cold junction compensation:

Automatic CJC incorporated as standard.

Input noise rejection

>120dB at 50/60Hz with Common mode rejection

balanced lead

Series mode rejection >500% of span at 50/60Hz

Accuracy

Measurement error $<\pm$ 0.25% of span \pm 1LSD

Linearizer Typically ±0.2°C Display range -1999 to +9999

<± 0.05°C /°C change in ambient CJC accuracy

temperature

Electrical Input Ranges

Input Type	Min. Value	Max. Value	Min. Value	Max. Value
mV	0	50	10	50
V	0	5	1	5
V	0	10	2	10
mA	0	20	4	20

Temperature Limits

THC Type	°C		°F	
Per NBS125 & IEC584	Min.	Max.	Min.	Max.
Type R	0	1650	32	3002
Type S	0	1649	32	3000
	0	205.4	32	401.7
Type J	0	450	32	842
	0	761	32	1401
Tuno T	-200	262	-328	503
Type T	0	260.6	32	501
Type K	-200	760	-328	1399
Туре К	-200	1373	-328	2503
	0	205.7	32	402.2
Type L	0	450	32	841
	0	762	32	1403
Type B	100	1842	211	3315
Type N	0	1399	32	2550
Туре N	0	800	32.0	1471
	-100.9	100	-149.7	211.9
	-200	206	-328	402
Type RTD	-100.9	537.3	-149.7	999
per DIN 43760 & IEC751	0	100.9	32	213.6
	0	300	32	571
	0	800	32.0	1471

Note.

Performance accuracy is not guaranteed below 600°C (112°F) for types B, R and S thermocouples.

RTD, 3-wire platinum, 100Ω with range of 0 to 400Ω .

Overall Dimensions

Electrical Connections

Ordering Information

